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Abstract

Majorization is a partial ordering on vectors which determines the degree of similarity be-

tween the vector elements. Majorization and the related concept of Schur-convexity can some-

times be used to prove certain properties of the solution to an optimization problem. For

example, these concepts form a convenient tool for showing that in certain symmetric problems,

the optimum is obtained when all optimization variables are equal.

1 Majorization and Schur-Convexity

We begin by defining the concepts of majorization and Schur-convexity. In the following discussion,

boldface letters indicate real n-vectors. We use the notation x(1) to indicate the largest element in

x, x(2) to indicate the second-largest element, and so on.

Definition 1. The vector x is said to majorize the vector y (denoted x � y) if

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, 2, . . . n− 1, (1)

and
n∑

i=1

xi =
n∑

i=1

yi (2)

Majorization is a partial ordering among vectors, which applies only to vectors having the same

sum. It is a measure of the degree to which the vector elements differ. For example, it can be shown

that all vectors of sum s majorize the uniform vector us =
(

s
n , s

n , . . . s
n

)
. Intuitively, the uniform
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vector is the vector with minimal differences between elements, so all other vectors majorize it.

Formally, this follows directly from the fact that for any vector x of sum s,
k∑

i=1

x(i) ≥
k

n
s, (3)

a fact which can be shown by induction on k.

Definition 2. A function f : Rn → R is called Schur-convex if

x � y =⇒ f(x) ≥ f(y). (4)

Schur-convex functions translate the ordering of vectors to a standard scalar ordering. An

example of a Schur-convex function is the max function, max(x) = x(1). Clearly, if x � y, then

x(1) ≥ y(1).

The max function is symmetric in that any two of its arguments can be switched without

modifying the value of the function. Symmetry is a necessary condition for a function to be Schur-

convex. Thus, for example, linear functions are not Schur-convex unless they are symmetric.

However, if a function is symmetric and convex, then it is Schur-convex [1, 3.C.2], [4].

There are several simple rules for Schur-convexity of combinations of Schur-convex functions.

For instance, suppose h : Rk → R is non-decreasing in each argument, and f1, . . . fk are Schur-

convex functions fi : Rn → R. Then, the function h(f1(x), . . . fk(x)) is Schur-convex [1, 3.B.1].

Additional combination laws are given in [1, 3.B].

2 Application to Optimization

2.1 Proving Uniform Optimality

The concept of majorization can be used as a tool for proving that the solution to an optimization

problem occurs when all variables are equal. For unconstrained problems, this is true if the objective

function is Schur-convex.

To see this, first consider the constrained optimization problem

min
x

f(x) s.t.
∑

xi = s, (5)

and assume f is Schur-convex. Since the uniform vector us is majorized by any other vector of

sum s, we have

f(us) ≤ f(x) (6)
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for any x having sum s. Thus, us is the solution to (5).

The unconstrained problem

min
x

f(x) (7)

is equivalent to

min
s

(
min

x
f(x) s.t.

∑
xi = s

)
, (8)

so that the solution to (7) is also us, for some s. This result can be summarized in the following

lemma.

Lemma 1. In an unconstrained minimization problem (7), where the objective function is Schur-

convex, the optimum is obtained when all variables are equal.

This result can also be extended to constrained optimization problems, as long as the uniform

solution is always feasible.

Lemma 2. Consider the constrained optimization problem

min
x∈A

f(x), (9)

where f is Schur-convex. Assume that A has the property that, for any value p in the set f(A), the

sum-p uniform vector up is a member of A. Then, the optimum value is obtained when all variables

are equal.

A more general version of this lemma is proved in the next subsection. An example which

amounts to the use of this lemma in a particular optimization problem can be found in Lemma 2

of [3].

2.2 Minimizing the Maximum of k Functions

A slightly different application occurs in the optimization problem

min
x∈A

h(f1(x), . . . fk(x)), (10)

where h is Schur-convex. For example, we may wish to minimize the worst-case (or maximum)

among several different functions (as we have seen, the maximum is a Schur-convex function). It is

sometimes useful to show that the optimum of (10) is obtained for x such that f1(x) = · · · = fk(x).

This can be shown using a generalization of Lemma 2.
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Lemma 3. Consider the optimization problem (10), where h is a Schur-convex function. Let

F (x) =
∑

fi(x). Suppose that for any value s in F (A), there exists x ∈ A such that f1(x) = · · · =

fk(x) = s/n. Then, the optimal solution to (10) satisfies f1(x) = · · · = fk(x).

Proof. Problem (10) is equivalent to

min
s

(
min
x∈A

h(f1(x), . . . fk(x)) s.t. F (x) = s

)
. (11)

For any s in F (A), there exists xs ∈ A such that (f1(xs), . . . fk(xs)) = us. Thus, for any y having

sum s,

(f1(y), . . . fk(y)) � (f1(xs), . . . fk(xs)), (12)

so that

h(f1(y), . . . fk(y)) ≥ h(f1(xs), . . . fk(xs)). (13)

Hence the solution to the problem

min
x

h(f1(x), . . . fk(x)) s.t. F (x) = s (14)

is xs. Thus, the solution to (11) equals xs for some value of s, so that for the optimal solution,

f1(x) = · · · = fk(x).

3 Majorization and Linear Algebra

The following lemmas are useful in proving the the optimality of various matrix optimization

problems in which a constraint on the trace of the matrix is given [2].

Lemma 4. Let H be a Hermitian n × n matrix with eigenvalues λ = (λ1, . . . λn). Let h =

(H11,H22, . . . Hnn). Then, λ � h.

For a proof of this lemma, please see [1, 9.B.1].

Lemma 5. Let x and y be two vectors in Rn such that x � y. Then, there exists a real symmetric

matrix with diagonal elements given by y and eigenvalues given by x.

For a proof of this lemma, please see [1, 9.B.2]. An algorithm for finding the matrix satisfying

these requirements is given in [2, p.68].
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