χ^{2} and Noncentral χ^{2} Distributions

Zvika Ben-Haim*

December 23, 2004

$1 \chi^{2}$ Distribution

Definition 1. The χ^{2} distribution is the sum of the squares of zero-mean Gaussian random variables. If $\left\{X_{i}\right\}_{i=1}^{p}$ are i.i.d. Gaussian random variables with zero mean and variance 1 , then $Y=\sum_{i=1}^{p} X_{i}^{2}$ is distributed as χ^{2} with k degrees of freedom (denoted χ_{k}^{2}).

The probability density function of Y is given by

$$
\begin{equation*}
f_{Y}(y)=\frac{y^{(p-2) / 2}}{2^{p / 2} \Gamma(p / 2)} e^{-y / 2} \tag{1}
\end{equation*}
$$

Basic properties of the χ^{2} distribution are listed below [2, $\left.\S 6.3\right]$.

$$
\begin{align*}
E(Y) & =p \tag{2}\\
E\left(Y^{2}\right) & =p(p+2) \tag{3}\\
E\left(\frac{1}{Y}\right) & =\frac{1}{p-2} \tag{4}
\end{align*}
$$

For $p>2$ and $a>0$, it can also be shown ${ }^{1}$ that

$$
\begin{align*}
E\left(\frac{1}{a+Y}\right) & =\int_{0}^{\infty} f_{Y}(y) \frac{1}{a+y} d y \\
& =\left(\frac{a}{2}\right)^{p / 2} \frac{e^{a / 2}}{a} \Gamma\left(1-\frac{p}{2}, \frac{a}{2}\right) \tag{5}
\end{align*}
$$

where $\Gamma(a, z)=\int_{z}^{\infty} t^{a-1} e^{-t} d t$ is the incomplete Gamma function.
Zero-mean Gaussian vectors which are not independent, or whose variance is not 1 , can also be related to the χ^{2} distribution, as follows. Let \mathbf{X} be a zero-mean Gaussian p-vector with covariance $E\left(\mathbf{X X}^{*}\right)=\mathbf{C}_{\mathbf{X}}$. Then, the random variable $\mathbf{X}^{*} \mathbf{C}_{\mathbf{X}}^{-1} \mathbf{X}$ is distributed as χ_{p}^{2}.

2 Noncentral χ^{2} Distribution

Definition 2. The noncentral χ^{2} distribution is the sum of the squares of non-zero-mean Gaussian random variables. Let $\left\{X_{i}\right\}_{i=1}^{p}$ be i.i.d. Gaussian random variables with means $\left\{\mu_{i}\right\}_{i=1}^{p}$, respectively, and variance 1. Then $Z=\sum_{i=1}^{p} X_{i}^{2}$ is distributed as noncentral χ^{2} with p degrees of freedom and noncentrality parameter $\lambda=\frac{1}{2} \mu^{*} \mu$. We will denote this as $\chi_{p}^{\prime 2}(\lambda)$.

[^0]Note that in some references, the noncentrality parameter is defined as $\lambda=\mu^{*} \mu$, but we will not use this notation here.

The noncentral χ^{2} distribution can be viewed as a χ^{2} distribution with $p+2 K$ degrees of freedom, where K is a Poisson random variable with parameter λ. Thus, the probability distribution function is given by

$$
\begin{equation*}
f_{Z}(z)=\sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^{i}}{i!} f_{Y_{p+2 i}}(z) \tag{6}
\end{equation*}
$$

where Y_{q} is distributed as χ_{q}^{2}.
Some additional properties of the noncentral χ^{2} distribution are [2, §6.3], [3, p. 134]

$$
\begin{align*}
E(Z) & =p+2 \lambda \tag{7}\\
\operatorname{Var}(Z) & =2 p+8 \lambda \tag{8}\\
E\left(\frac{1}{Z}\right) & =E\left(\frac{1}{p+2(K-1)}\right) \tag{9}
\end{align*}
$$

where $K \sim \operatorname{Poisson}(\lambda)$.
Using (5) it can be shown that, for $p>2$ and $a>0$,

$$
\begin{equation*}
E\left(\frac{1}{a+Z}\right)=\frac{e^{a / 2}}{a} E\left[\left(\frac{a}{2}\right)^{(p+2 K) / 2} \Gamma\left(\frac{2-p-2 K}{2}, \frac{a}{2}\right)\right] \tag{10}
\end{equation*}
$$

where $K \sim \operatorname{Poisson}(\lambda)$ as before.
The inverse moments $E\left(1 / Z^{n}\right)$, when $p>2 n$, were calculated by [1]. They are, for even p,

$$
\begin{equation*}
E\left(\frac{1}{Z^{n}}\right)=\frac{(-1)^{n-p / 2} 2^{-n}}{(n-1)!} \sum_{s=0}^{n-1}\left[\binom{n-1}{s} \lambda^{s-p / 2+1} \Gamma\left(\frac{p}{2}-s-1\right)\left(e^{-\lambda}-\sum_{t=0}^{p / 2-s-2} \frac{(-\lambda)^{t}}{t!}\right)\right], \tag{11}
\end{equation*}
$$

and for odd p,

$$
\begin{align*}
E\left(\frac{1}{Z^{n}}\right)= & \frac{(-1)^{n(p-1) / 2} 2^{-n}}{(n-1)!} \\
& \cdot \sum_{s=0}^{n-1}\left[\binom{n-1}{s} \lambda^{s-p / 2+1} \Gamma\left(\frac{p}{2}-s-1\right)\left(\frac{2}{\sqrt{\pi}} D(\sqrt{\lambda})-\sqrt{\lambda} \sum_{m=0}^{\frac{p-5}{2}-s} \frac{(-\lambda)^{m}}{\Gamma\left(m+\frac{3}{2}\right)}\right)\right] \tag{12}
\end{align*}
$$

where Dawson's integral is given by

$$
\begin{equation*}
D(y)=e^{-y^{2}} \int_{0}^{y} e^{t^{2}} d t \cong \frac{1}{2 y} \text { for large } y . \tag{13}
\end{equation*}
$$

References

[1] M. E. Bock, G. G. Judge and T. A. Yancey (1984), "A simple form for the inverse moments of noncentral χ^{2} and F random variables and certain confluent hypergeometric functions," Journal of Econometrics, 25: 217-234.
[2] E. Greenberg and C. E. Webster, Jr. (1983), Advanced Econometrics: A Bridge to the Literature, Wiley.
[3] N. L. Johnson and S. Kotz (1970), Continuous Univariate Distributions, vol. 2, Houghton-Mifflin.

[^0]: *zvikabh@technion.ac.il
 ${ }^{1}$ The integral was solved using Maple.

