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1 x? Distribution

Definition 1. The x? distribution is the sum of the squares of zero-mean Gaussian random variables. If
{X;}!_, areii.d. Gaussian random variables with zero mean and variance 1, then Y = !, X?is distributed
as x2 with k degrees of freedom (denoted X%)-

The probability density function of Y is given by
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Basic properties of the x? distribution are listed below [2, §6.3].
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For p > 2 and a > 0, it can also be shown! that
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where I'(a,z) = [ t"~le~!dt is the incomplete Gamma function.

Zero-mean Gaussian vectors which are not independent, or whose variance is not 1, can also be related
to the x? distribution, as follows. Let X be a zero-mean Gaussian p-vector with covariance E(XX*) = Cx.
Then, the random variable X*Cy X is distributed as X%.

2 Noncentral x? Distribution

Definition 2. The noncentral x? distribution is the sum of the squares of non-zero-mean Gaussian random

p
i=1
Then Z = Zle X? is distributed as noncentral x> with p degrees of freedom and noncentrality parameter

A = $u*p. We will denote this as )(;,2(/\).

variables. Let {X,«}f:1 be i.i.d. Gaussian random variables with means {y;}:_,, respectively, and variance 1.
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I The integral was solved using Maple.



Note that in some references, the noncentrality parameter is defined as A = p*u, but we will not use
this notation here.

The noncentral x? distribution can be viewed as a x? distribution with p + 2K degrees of freedom, where
K is a Poisson random variable with parameter A. Thus, the probability distribution function is given by
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where Y}, is distributed as X%-
Some additional properties of the noncentral x? distribution are [2, §6.3], [3, p- 134]
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where K ~ Poisson(A).
Using (5) it can be shown that, for p > 2and a > 0,
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where K ~ Poisson(A) as before.

The inverse moments E(1/Z"), when p > 2n, were calculated by [1]. They are, for even p,
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and for odd p,
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where Dawson’s integral is given by
y
D(y) = eiyz/o dr 21y for large y. (13)
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