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1 χ2 Distribution

Definition 1. The χ2 distribution is the sum of the squares of zero-mean Gaussian random variables. If
{Xi}p

i=1 are i.i.d. Gaussian random variables with zero mean and variance 1, then Y = ∑
p
i=1 X2

i is distributed
as χ2 with k degrees of freedom (denoted χ2

k).

The probability density function of Y is given by

fY(y) =
y(p−2)/2

2p/2Γ(p/2)
e−y/2. (1)

Basic properties of the χ2 distribution are listed below [2, §6.3].

E(Y) = p (2)
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For p > 2 and a > 0, it can also be shown1 that
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)
, (5)

where Γ(a, z) =
∫ ∞

z ta−1e−tdt is the incomplete Gamma function.
Zero-mean Gaussian vectors which are not independent, or whose variance is not 1, can also be related

to the χ2 distribution, as follows. Let X be a zero-mean Gaussian p-vector with covariance E(XX∗) = CX.
Then, the random variable X∗C−1

X X is distributed as χ2
p.

2 Noncentral χ2 Distribution

Definition 2. The noncentral χ2 distribution is the sum of the squares of non-zero-mean Gaussian random
variables. Let {Xi}p

i=1 be i.i.d. Gaussian random variables with means {µi}p
i=1, respectively, and variance 1.

Then Z = ∑
p
i=1 X2

i is distributed as noncentral χ2 with p degrees of freedom and noncentrality parameter
λ = 1

2 µ∗µ. We will denote this as χ′2p (λ).
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1The integral was solved using Maple.
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Note that in some references, the noncentrality parameter is defined as λ = µ∗µ, but we will not use
this notation here.

The noncentral χ2 distribution can be viewed as a χ2 distribution with p + 2K degrees of freedom, where
K is a Poisson random variable with parameter λ. Thus, the probability distribution function is given by

fZ(z) =
∞

∑
i=0

e−λλi

i!
fYp+2i (z), (6)

where Yq is distributed as χ2
q.

Some additional properties of the noncentral χ2 distribution are [2, §6.3], [3, p. 134]

E(Z) = p + 2λ (7)

Var(Z) = 2p + 8λ (8)

E
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)
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where K ∼ Poisson(λ).
Using (5) it can be shown that, for p > 2 and a > 0,
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, (10)

where K ∼ Poisson(λ) as before.
The inverse moments E(1/Zn), when p > 2n, were calculated by [1]. They are, for even p,
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and for odd p,
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
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
 , (12)

where Dawson’s integral is given by

D(y) = e−y2
∫ y

0
et2

dt ∼= 1
2y

for large y. (13)
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