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Abstract

A lower bound on the minimum mean-squared error (MSE) in a Bayesian estimation problem is

proposed in this paper. The bound is based on the approach of Young and Westerberg, in which a

connection to the deterministic estimation setting is utilized. Using the prior distribution, the bias function

which minimizes the Cramér–Rao bound can be determined, resulting in a lower bound on the Bayesian

MSE. The bound is developed for the general case of a vector parameter with an arbitrary probability

distribution, and is shown to be asymptotically tight in both the high and low signal-to-noise ratio

regimes. A numerical study demonstrates several cases in which the proposed technique is both simpler

to compute and tighter than alternative methods.

Index Terms

Bayesian bounds, Bayesian estimation, minimum mean-squared error estimation, optimal bias,

performance bounds.

I. INTRODUCTION

One of the prime goals of estimation theory is to infer the value of an unknown parameter based on

observations. A common approach to this problem is the Bayesian framework, in which the estimate

is constructed by combining the measurements with prior information about the parameter [1]. In this

setting, the parameter θ is random, and its (prior) distribution describes the a priori knowledge of the

unknown value. In addition, measurements x are performed, whose conditional distribution, given θ,
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provides further information about the parameter. The objective is to construct an estimator θ̂, which is

a function of the measurements, so that θ̂ is close to θ in some sense. A common measure of the quality

of an estimator is its mean-squared error (MSE), given by E{‖θ − θ̂‖2}.

It is well-known that the posterior mean E{θ|x} is the technique minimizing the MSE. Thus, from a

theoretical perspective, there is no difficulty in finding the minimum MSE (MMSE) estimator in any given

problem. In practice, however, the complexity of computing the posterior mean is often prohibitive. As

a result, various alternatives, such as the maximum a posteriori (MAP) technique, have been developed

[2]. The purpose of such methods is to approach the performance of the MMSE estimator with a

computationally efficient algorithm.

An important goal is to quantify the performance degradation resulting from the use of these suboptimal

techniques. One way to do this is to compare the MSE of the method used in practice with the MMSE.

Unfortunately, computation of the MMSE is itself infeasible in many cases. This has led to a large body

of work seeking to find simple lower bounds for the MMSE in various estimation problems [3]–[12].

Generally speaking, previous bounds can be divided into two categories. The Weiss–Weinstein family

is based on a covariance inequality and includes the Bayesian Cramér–Rao bound [3], the Bobrovski–

Zakai bound [8], and the Weiss–Weinstein bound [9], [10]. The Ziv–Zakai family of bounds is based

on comparing the estimation problem to a related detection scenario. This family includes the Ziv–Zakai

bound [4] and its improvements, notably the Bellini–Tartara bound [6], the Chazan–Zakai–Ziv bound [7],

and the generalization of Bell et al. [11]. Recently, Renaux et al. have combined both approaches [12].

The accuracy of the bounds described above is usually tested numerically in particular estimation

settings. Few of the previous results provide any sort of analytical proof of accuracy, even under asymptotic

conditions. Bellini and Tartara [6] briefly discuss performance of their bound at high signal-to-noise ratio

(SNR), and Bell et al. [11] prove that their bound converges to the true value at low SNR for a particular

family of Gaussian-like probability distributions. To the best of our knowledge, there are no other results

concerning the asymptotic performance of Bayesian bounds.

A different estimation setting arises when one considers θ as a deterministic unknown parameter. In

this case, too, a common goal is to construct an estimator having low MSE. However, the term MSE has

a very different meaning in the deterministic setting, since in this case, the expectation is taken only over

the random variable x. One elementary difference with far-reaching implications is that in the Bayesian

case, the MSE is a single real number, whereas the deterministic MSE is a function of the unknown

parameter θ [13].

Many lower bounds have been developed for the deterministic setting, as well. These include classical
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results such as the Cramér–Rao [14], [15], Hammersley–Chapman–Robbins [16], [17], Bhattacharya

[18], and Barankin [19] bounds, as well as more recent results [20]–[27]. By far the simplest and most

commonly used of these approaches is the Cramér–Rao bound (CRB). Like most other deterministic

bounds, the CRB deals explicitly with unbiased estimators, or, equivalently, with estimators having a

specific, pre-specified bias function. Two exceptions are the uniform CRB [22], [24] and the minimax

linear-bias bound [25]. Even though many later bounds are sharper than the CRB, it is known to be

asymptotically tight in many cases [24], [28].

Although the deterministic and Bayesian settings stem from different points of view, there exist

insightful relations between the two approaches. The basis for this connection is the fact that by adding

a prior distribution for θ, any deterministic problem can be transformed to a corresponding Bayesian

setting. Several theorems relate the performance of corresponding Bayesian and deterministic scenarios

[29]. As a consequence, numerous bounds have both a deterministic and a Bayesian version [3], [10],

[12], [30].

The simplicity and asymptotic tightness of the deterministic CRB motivate its use in problems in

which θ is random. Such an application was described by Young and Westerberg [5], who considered the

case of a scalar θ constrained to the interval [θ0, θ1]. They used the prior distribution of θ to determine

the optimal bias function for use in the biased CRB, and thus obtained a Bayesian bound. It should be

noted that this result differs from the Bayesian CRB of Van Trees [3]; the two bounds are compared in

Section II-C. We refer to the result of Young and Westerberg as the optimal-bias bound (OBB), since it

is based on choosing the bias function which optimizes the CRB using the given prior distribution.

This paper provides an extension and a deeper analysis of the OBB. Specifically, we generalize the

bound to an arbitrary n-dimensional estimation setting [31]. The bound is determined by finding the

solution to a certain partial differential equation. Using tools from functional analysis, we demonstrate

that a unique solution exists for this differential equation. Under suitable symmetry conditions, it is shown

that the method can be reduced to the solution of an ordinary differential equation and, in some cases,

presented in a closed form.

The mathematical tools employed in this paper are also used for characterizing the performance of the

OBB. Specifically, it is demonstrated analytically that the proposed bound is asymptotically tight for both

high and low SNR values. Furthermore, the OBB is compared with several other bounds; in the examples

considered, the OBB is both simpler computationally and more accurate than all relevant alternatives.

The remainder of this paper is organized as follows. In Section II, we derive the OBB for a vector

parameter. Section III discusses some mathematical concepts required to ensure the existence of the OBB.
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In Section IV, a practical technique for calculating the bound is developed using variational calculus. In

Section V, we demonstrate some properties of the OBB, including its asymptotic tightness. Finally, in

Section VI, we compare the performance of the bound with that of other relevant techniques.

II. OPTIMAL BIAS BOUND

In this section, we derive the OBB for the general vector case. To this end, we first examine the

relation between the Bayesian and deterministic estimation settings (Section II-A). Next, we focus on

the deterministic case and review the basic properties of the CRB (Section II-B). Finally, the OBB is

derived from the CRB (Section II-C).

The focus of this paper is the Bayesian estimation problem, but the bound we propose stems from the

theory of deterministic estimation. To avoid confusion, we will indicate that a particular quantity refers

to the deterministic setting by appending the symbol ; θ to it. For example, the notation E{·} denotes

expectation over both θ and x, i.e., expectation in the Bayesian sense, while expectation solely over x

(in the deterministic setting) is denoted by E{·; θ}. The notation E{· | θ} indicates Bayesian expectation

conditioned on θ.

Some further notation used throughout the paper is as follows. Lowercase boldface letters signify

vectors and uppercase boldface letters indicate matrices. The ith component of a vector v is denoted vi,

while v(1), v(2), . . . signifies a sequence of vectors. The derivative ∂f/∂v of a function f(v) is a vector

function whose ith element is ∂f/∂vi. Similarly, given a vector function b(θ), the derivative ∂b/∂θ

is defined as the matrix function whose (i, j)th entry is ∂bi/∂θj . The squared Euclidean norm vT v of

a vector v is denoted ‖v‖2, while the squared Frobenius norm Tr(MMT ) of a matrix M is denoted

‖M‖2
F . In Section III, we will also define some functional norms, which will be of use later in the paper.

A. Bayesian–Deterministic Connection

We now review a fundamental relation between the Bayesian and deterministic estimation settings. Let

θ be an unknown random vector in Rn and let x be a measurement vector. The joint probability density

function (pdf) of θ and x is px,θ(x, θ) = px|θ(x|θ)pθ(θ), where pθ is the prior distribution of θ and

px|θ is the conditional distribution of x given θ. For later use, define the set Θ of feasible parameter

values by

Θ = {θ ∈ Rn : pθ(θ) > 0}. (1)

Suppose θ̂ = θ̂(x) is an estimator of θ. Its (Bayesian) MSE is given by

MSE = E
{
‖θ̂ − θ‖2

}
=

∫
‖θ̂ − θ‖2px,θ(x, θ)dxdθ. (2)
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By the law of total expectation, we have

MSE =
∫ (∫

‖θ̂ − θ‖2px|θ(x|θ)dx

)
pθ(θ)dθ = E

{
E

{
‖θ̂ − θ‖2

∣∣∣θ
}}

. (3)

Now consider a deterministic estimation setting, i.e., suppose θ is a deterministic unknown which is to

be estimated from random measurements x. Let the distribution px;θ of x (as a function of θ) be given

by px;θ(x; θ) = px|θ(x|θ), i.e., the distribution of x in the deterministic case equals the conditional

distribution in the corresponding Bayesian problem.

The estimator θ̂ defined above is simply a function of the measurements, and can therefore be applied

in the deterministic case as well. Its deterministic MSE is given by

E
{
‖θ̂ − θ‖2;θ

}
=

∫
‖θ̂ − θ‖2px;θ(x; θ)dx (4)

Since px;θ(x;θ) = px|θ(x|θ), we have

E
{
‖θ̂ − θ‖2; θ

}
= E

{
‖θ̂ − θ‖2

∣∣∣θ
}

. (5)

Combining this fact with (3), we find that the Bayesian MSE equals the expectation of the MSE of the

corresponding deterministic problem, i.e.

E
{
‖θ̂ − θ‖2

}
= E

{
E

{
‖θ̂ − θ‖2;θ

}}
. (6)

This relation will be used to construct the OBB in Section II-C.

B. The Deterministic Cramér–Rao Bound

Before developing the OBB, we review some basic results in the deterministic estimation setting.

Suppose θ is a deterministic parameter vector and let x be a measurement vector having pdf px;θ(x; θ).

Denote by Θ ⊆ Rn the set of all possible values of θ. We assume for technical reasons that Θ is an

open set.1

Let θ̂ be an estimator of θ from the measurements x. We require the following regularity conditions

to ensure that the CRB holds [32, §3.1.3].

1) px;θ(x; θ) is continuously differentiable with respect to θ. This condition is required to ensure the

existence of the Fisher information.

1This is required in order to ensure that one can discuss differentiability of px;θ with respect to θ at any point θ ∈ Θ. In the

Bayesian setting to which we will return in Section II-C, Θ is defined by (1); in this case, adding a boundary to Θ essentially

leaves the setting unchanged, as long as the prior probability for θ to be on the boundary of Θ is zero. Hence, this requirement

is of little practical relevance.
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2) The Fisher information matrix J(θ), defined by

[J(θ)]ij = E

{
∂ log px;θ

∂θi

∂ log px;θ

∂θj
; θ

}
(7)

is bounded and positive definite for all θ ∈ Θ. This ensures that the measurements contain data

about the unknown parameter.

3) Exchanging the integral and derivative in the equation
∫

Θ
t(x)

∂

∂θi
px;θ(x; θ)dx =

∂

∂θi

∫

Θ
t(x)px;θ(x; θ)dx (8)

is justified for any measurable function t(x), in the sense that, if one side exists, then the other

exists and the two sides are equal. A sufficient condition for this to hold is that the support of px;θ

does not depend on θ.

4) To ensure that the MSE is well-defined, one must place some technical restrictions on the class of

estimators being considered. Specifically, we will assume that all estimators θ̂ are Borel measurable

functions, and that θ̂ satisfies
∥∥∥∥
∂px;θ

∂θ
θ̂

T
∥∥∥∥

F

≤ g(x) for all θ (9)

for some integrable function g(x).

The bias of an estimator θ̂ is defined as

b(θ) = E
{

θ̂;θ
}
− θ. (10)

Under the above assumptions, it can be shown that the bias of any estimator is continuously differentiable

[5, Lemma 2]. Furthermore, under these assumptions, the CRB holds, and thus, for any estimator having

bias b(θ), we have

E
{
‖θ − θ̂‖2;θ

}
≥ CRB[b, θ]

, Tr

[(
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
]

+ ‖b(θ)‖2. (11)

A more common form of the CRB is obtained by restricting attention to unbiased estimators (i.e.,

techniques for which b(θ) = 0). Under the unbiasedness assumption, the bound simplifies to MSE ≥
Tr(J−1(θ)). However, in the sequel we will make use of the general form (11).
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C. Bayesian Bound from the CRB

The OBB of Young and Westerberg [5] is based on applying the Bayesian–deterministic connection

described in Section II-A to the deterministic CRB (11). Specifically, returning now to the Bayesian

setting, one can combine (6) and (11) to obtain that, for any estimator θ̂ with bias function b(θ),

E
{
‖θ − θ̂‖2

}
≥ Z[b] ,

∫

Θ
CRB[b, θ] pθ(dθ) (12)

where the expectation is now performed over both θ and x. Since any estimator has some bias function,

minimizing Z[b] over all continuously differentiable functions b yields a lower bound on the MSE of any

Bayesian estimator. Thus, under the regularity conditions of Section II-B, a lower bound on the Bayesian

MSE is given by

s = inf
b∈C1

∫

Θ

[
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

+ ‖b(θ)‖2

]
pθ(dθ) (13)

where C1 is the space of continuously differentiable functions f : Θ → Rn.

Note that the OBB differs from the Bayesian CRB of Van Trees [3]. Van Trees’ result is based on

applying the Cauchy–Schwarz inequality to the joint pdf px,θ, whereas the deterministic CRB is based

on applying a similar procedure to px;θ. As a consequence, the regularity conditions required for the

Bayesian CRB are stricter, requiring that px,θ be twice differentiable with respect to θ. By contrast, the

OBB requires differentiability only of the conditional pdf px|θ. An example in which this difference is

important is the case in which the prior distribution pθ is discontinuous, e.g., when pθ is uniform. The

performance of the OBB in this setting will be examined in Section VI.

In the next section, we will see that it is advantageous to perform the minimization (13) over a

somewhat modified class of functions. This will allow us to prove the unique existence of a solution to

the optimization problem, a result which will be of use when examining the properties of the bound later

in the paper.

III. MATHEMATICAL SAFEGUARDS

In the previous section, we saw that a lower bound on the MMSE can be obtained by solving the

minimization problem (13). However, at this point, we have no guarantee that the solution s of (13) is

anywhere near the true value of the MMSE. Indeed, at first sight, it may appear that s = 0 for any

estimation setting. To see this, note that Z[b] is a sum of two components, a bias gradient part and

a squared bias part. Both parts are nonnegative, but the former is zero when the bias gradient is −I ,

while the latter is zero when the bias is zero. No differentiable function b satisfies these two constraints
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Fig. 1. A sequence of continuous functions for which both |b(θ)|2 and (1 + b′(θ))2 tend to zero for almost every value of θ.

simultaneously for all θ, since if the squared bias is everywhere zero, then the bias gradient is also

zero. However, it is possible to construct a sequence of functions b(i) for which both the bias gradient

and the squared bias norm tend to zero for almost every value of θ. An example of such a sequence

in a one-dimensional setting is plotted in Fig. 1. Here, a sequence b(i) of smooth, periodic functions

is presented. The function period tends to zero, and the percentage of the cycle in which the derivative

equals −1 increases as i increases. Thus, the pointwise limit of the function sequence is zero almost

everywhere, and the pointwise limit of the derivative is −1 almost everywhere.

In the specific case shown in Fig. 1, it can be shown that the value of Z[b(i)] does not tend to zero; in

fact, Z[b(i)] tends to infinity in this situation. However, this example illustrates that care must be taken

when applying concepts from finite-dimensional optimization problems to variational calculus.

The purpose of this section is to show that s > 0, so that the bound is meaningful, for any problem

setting satisfying the regularity conditions2 of Section II-B. While doing so, we develop some abstract

concepts which will also be used when analyzing the asymptotic properties of the OBB in Section V.

As often happens with variational problems, it turns out that the minimum of (13) is not necessarily

achieved by any continuously differentiable function. In order to guarantee an achievable minimum, one

must instead minimize (13) over a larger space which is defined below. As explained in Section II-B, all

2This question was not addressed by Young and Westerberg [5].
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bias functions are continuously differentiable, so that the minimizing function ultimately obtained, if it

is not differentiable, will not be the bias of any estimator. However, the enlarged optimization problem

still provides a lower bound on the MMSE. Furthermore, as we will see, this approach enables us to

demonstrate several important theoretical properties of the OBB, and does not significantly reduce its

accuracy.

Let L2 be the space of pθ-measurable functions b : Θ → Rn such that
∫

Θ
‖b(θ)‖2pθ(dθ) < ∞. (14)

Define the associated inner product
〈
b(1), b(2)

〉
L2

,
n∑

i=1

∫

Θ
b
(1)
i (θ)b(2)

i (θ)pθ(dθ) (15)

and the corresponding norm ‖b‖2
L2 , 〈b, b〉L2 . Any function b ∈ L2 has a derivative in the distributional

sense, but this derivative might not be a function. For example, discontinuous functions have distributional

derivatives which contain a Dirac delta. If, for every i, the distributional derivative ∂bi/∂θ of b is a

function in L2, then b is said to be weakly differentiable [33], and its weak derivative is the matrix

function ∂b/∂θ. On a more intuitive level, a function is weakly differentiable if its derivative exists

almost everywhere, as long as the points in which the derivative is undefined are not Dirac deltas.

The space of all weakly differentiable functions in L2 is called the first-order Sobolev space [33], and

is denoted H1. Define an inner product on H1 as

〈
b(1), b(2)

〉
H1

,
〈
b(1), b(2)

〉
L2

+
n∑

j=1

〈
∂b

(1)
j

∂θ
,
∂b

(2)
j

∂θ

〉

L2

. (16)

The associated norm is ‖b‖2
H1 , 〈b, b〉H1 . We now consider the minimization problem

s̄ = inf
b∈H1

Z[b]. (17)

Any measurable function which is not in H1 has ‖b‖H1 = ∞. This means that either b or ∂b/∂θ has

infinite L2 norm. As a consequence, either the bias norm part or the bias gradient part of Z[b] is infinite.

Thus, performing the minimization (13) over H1 rather than over C1 does not increase the value of the

objective. In other words, s̄ ≤ s, so that (17) is a lower bound on the MSE of any Bayesian estimator.

The advantage of including weakly differentiable functions in the minimization is that a unique

minimizer can now be guaranteed, as demonstrated by the following result.

Proposition 1. Consider the problem

b̄ = arg min
b∈H1

Z[b] (18)
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where Z[b] is given by (12) and J(θ) is positive definite and bounded with probability 1. This problem is

well-defined, i.e., there exists a unique b̄ ∈ H1 which minimizes Z[b]. Furthermore, the minimum value

s̄ = Z[b̄] is finite and nonzero.

Proving the unique existence of a minimizer for (17) is a technical exercise in functional analysis which

can be found in Appendix B. However, once the existence of such a minimizer is demonstrated, it is not

difficult to see that 0 < s̄ < ∞. To see that s̄ < ∞, we must find a function b for which Z[b] < ∞. One

such function is b = 0, for which Z[b] is finite since J(θ) is bounded. Now suppose by contradiction

that s̄ = 0, which implies that there exists a function b̄ ∈ H1 such that Z[b̄] = 0. Therefore, both the

bias gradient and the squared bias parts of Z[b̄] are zero. In particular, since the squared bias part equals

zero, we have ‖b̄‖L2 = 0. Hence, b̄ = 0, because L2 is a normed space. But then, by the definition (12)

of Z[·],
Z[b̄] =

∫

Θ
Tr(J−1(θ))pθ(dθ) (19)

which is positive; this is a contradiction.

Note that functions in H1 are defined up to changes on a set having zero measure. In particular, the

fact that b(0) is unique does not preclude functions which are identical to b(0) almost everywhere (which

obviously have the same value Z[b]).

Summarizing the discussion of the last two sections, we have the following theorem.

Theorem 1. Let θ be an unknown random vector with pdf pθ(θ) > 0 over the open set Θ ⊆ Rn, and let

x be a measurement vector whose pdf, conditioned on θ, is given by px|θ(x|θ). Assume the regularity

conditions of Section II-B hold. Then, for any estimator θ̂,

E
{
‖θ − θ̂‖2

}
≥ min

b∈H1

∫

Θ
CRB[b, θ]pθ(θ)dθ. (20)

The minimum in (20) is nonzero and finite. Furthermore, this minimum is achieved by a function b̄ ∈ H1,

which is unique up to changes having zero probability.

Two remarks are in order concerning Theorem 1. First, the function b solving (20) might not be the

bias of any estimator; indeed, under our assumptions, all bias functions are continuously differentiable,

whereas b need only be weakly differentiable. Nevertheless, (20) is still a lower bound on the MMSE.

Another important observation is that Theorem 1 arises from the deterministic CRB; hence, there are no

requirements on the prior distribution pθ(θ). In particular, pθ(θ) can be discontinuous or have bounded

support. By contrast, many previous Bayesian bounds do not apply in such circumstances.
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IV. CALCULATING THE BOUND

In finite-dimensional convex optimization problems, the requirement of a vanishing first derivative

results in a set of equations, whose solution is the global minimum. Analogously, in the case of convex

functional optimization problems such as (20), the optimum is given by the solution of a set of differential

equations. The following theorem, whose proof can be found in Appendix C, specifies the differential

equation relevant to our optimization problem.

In this section and in the remainder of the paper, we will consider the case in which the set Θ = {θ :

pθ(θ) > 0} is bounded. From a practical point of view, even when Θ consists of the entire set Rn, it

can be approximated by a bounded set containing only those values of θ for which pθ(θ) > ε.

Theorem 2. Under the conditions of Theorem 1, suppose Θ is a bounded subset of Rn with a smooth

boundary Λ. Then, the optimal b(θ) of (20) is given by the solution to the system of partial differential

equations

pθ(θ)bi(θ) = pθ(θ)
∑

j,k

∂2bi

∂θj∂θk
(J−1)jk

+
∑

j,k

(
δik +

∂bi

∂θk

)(
(J−1(θ))jk

∂pθ

∂θj
+ pθ(θ)

∂(J−1)jk

∂θj

)
(21)

for i = 1, . . . n, within the range θ ∈ Θ, which satisfies the Neumann boundary condition
(

I +
∂b

∂θ

)
J−1ν(θ) = 0 (22)

for all points θ ∈ Λ, where ν(θ) is a normal to the boundary at θ. All derivatives in this system of

equations are to be interpreted in the weak sense.

Note that Theorem 1 guarantees the existence of a unique solution in H1 to the differential equation

(21) with the boundary conditions (22).

The bound of Young and Westerberg [5] is a special case of Theorem 2, and is given here for

completeness.

Corollary 1. Under the settings of Theorem 1, suppose Θ = (θ0, θ1) is a bounded interval in R. Then,

the bias function b(θ) minimizing (20) is a solution to the second-order ordinary differential equation

J(θ)b(θ) = b′′(θ) + (1 + b′(θ))
(

d log pθ

dθ
− d log J

dθ

)
(23)

within the range θ ∈ Θ, subject to the boundary conditions b′(θ0) = b′(θ1) = −1.
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Theorem 2 can be solved numerically, thus obtaining a bound for any problem satisfying the regularity

conditions. However, directly solving (21) becomes increasingly complex as the dimension of the problem

increases. Instead, in many cases, symmetry relations in the problem can be used to simplify the solution.

As an example, the following spherically symmetric case can be reduced to a one-dimensional setting

equivalent to that of Corollary 1. The proof of this theorem can be found in Appendix D.

Theorem 3. Under the setting of Theorem 1, suppose that Θ = {θ : ‖θ‖ < r} is a sphere centered

on the origin, pθ(θ) = q(‖θ‖) is spherically symmetric, and J(θ) = J(‖θ‖)I , where J(·) is a scalar

function. Then, the optimal-bias bound (20) is given by

E
{
‖θ − θ̂‖2

}
≥ 2πn/2

Γ(n/2)

∫ r

0

[
b2(ρ) +

(1 + b′(ρ))2

J(ρ)
+

n− 1
J(ρ)

(
1 +

b(ρ)
ρ

)2
]

q(ρ)ρn−1dρ (24)

where Γ(·) is the Gamma function. Here, b(ρ) is a solution to the ODE

J(θ)b(θ) = b′′(θ) + (n− 1)
(

b′(θ)
θ

− b(θ)
θ2

)
+ (1 + b′(θ))

(
d log q

dθ
− d log J

dθ

)
(25)

subject to the boundary conditions b(0) = 0, b′(r) = −1. The bias function for which the bound is

achieved is given by

b(θ) = b(‖θ‖) θ

‖θ‖ . (26)

In this theorem, the requirement J(θ) = J(‖θ‖)I indicates that the Fisher information matrix is

diagonal and that its components are spherically symmetric. Parameters having a diagonal matrix J are

sometimes referred to as orthogonal. The simplest case of orthogonality occurs when, to each parameter

θi, there corresponds a measurement xi, in such a way that the random variables xi|θ are independent.

Other orthogonal scenarios can often be constructed by an appropriate parametrization [34].

The requirement that J have spherically symmetric components occurs, for example, in location

problems, i.e., situations in which the measurements have the form x = θ+w, where w is additive noise

which is independent of θ. Indeed, under such conditions, J is constant in θ [32, §3.1.3]. If, in addition,

the noise components are independent, then this setting also satisfies the orthogonality requirement, and

thus application of Theorem 3 is appropriate. Note that this estimation problem is not separable, since

the components of θ are correlated; thus, the MMSE in this situation is lower than the sum of the

components’ MMSE. An example of such a setting is presented in Section VI.

V. PROPERTIES

In this section, we examine several properties of the OBB. We first demonstrate that the optimal bias

function has zero mean, a property which also characterizes the bias function of the MMSE estimator.
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Next, we prove that, under very general conditions, the resulting bound is tight at both low and high

SNR values. This is an important result, since a desirable property of a Bayesian bound is that it provides

an accurate estimate of the ambiguity region between high and low SNR [11]. Reliable estimation at

the two extremes increases the likelihood that the transition between these two regimes will be correctly

identified.

A. Optimal Bias has Zero Mean

In any Bayesian estimation problem, the bias of the MMSE estimator θ̂opt = E{θ|x} has zero mean:

E
{

θ̂opt

}
= E{E{θ|x}} = E{θ} (27)

so that

E
{

b(θ̂opt)
}

= E{E{θ|x} − θ} = 0. (28)

Thus, it is interesting to ask whether the optimal bias which minimizes (20) also has zero mean. This is

indeed the case, as shown by the following theorem.

Theorem 4. Let b(θ) be the solution to (20). Then, E{b(θ)} = 0.

Proof: Assume by contradiction that b(θ) has nonzero mean E{b(θ)} = µ 6= 0. Define b0(θ) ,

b(θ)− µ. From (11), we then have

CRB[b0,θ]− CRB[b, θ] = ‖b0(θ)‖2 − ‖b(θ)‖2

= ‖µ‖2 − 2µT b(θ). (29)

Using the functional Z[·] defined in (12), we thus have

Z[b0]− Z[b] = E
{‖µ‖2 − 2µT b(θ)

}

= ‖µ‖2 − 2µT E{b(θ)}

= −‖µ‖2 < 0. (30)

Therefore, Z[b0] < Z[b], contradicting the fact that b(θ) minimizes (20).

B. Tightness at Low SNR

Bell et al. [11] examined the performance of the extended Ziv–Zakai bound at low SNR and

demonstrated that, for a particular family of distributions, the extended Ziv–Zakai bound achieves the
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MSE of the optimal estimator as the SNR tends to 0. We now examine the low-SNR performance of the

OBB, and demonstrate tightness for a much wider range of problem settings.

Bell et al. did not define the general meaning of a low SNR value, and only stated that “[a]s observation

time and/or SNR become very small, the observations become useless . . . [and] the minimum MSE

estimator converges to the a priori mean.” This statement clearly does not apply to all estimation problems,

since it is not always clear what parameter corresponds to the observation time or the SNR. We propose

to define the zero SNR case more generally as any situation in which J(θ) = 0 with probability 1. This

definition implies that the measurements do not contain information about the unknown parameter, which

is the usual informal meaning of zero SNR. In the case J(θ) = 0, it can be shown that the MMSE

estimator is the prior mean, so that our definition implies the statement of Bell et al.

The OBB is inapplicable when J(θ) = 0, since the CRB is based on the assumption that J(θ) is

positive definite. To avoid this singularity, we consider a sequence of estimation settings which converge

to zero SNR. More specifically, we require all eigenvalues of J(θ) to decrease monotonically to zero for

pθ-almost all θ. The following theorem, the proof of which can be found in Appendix E, demonstrates

the tightness of the OBB in this low-SNR setting.

Theorem 5. Let θ be a random vector whose pdf pθ(θ) is nonzero over an open set Θ ⊆ Rn.

Let x(1), x(2), . . . be a sequence of observation vectors having finite Fisher information matrices

J (1)(θ),J (2)(θ), . . ., respectively. Suppose that, for all N , the matrix J (N)(θ) is positive definite for

pθ-almost all θ, and that all eigenvalues of J (N)(θ) decrease monotonically to zero as N → ∞ for

pθ-almost all θ. Let βN denote the optimal-bias bound for estimating θ from x(N). Then,

lim
N→∞

βN = E
{
‖θ −E{θ}‖2

}
. (31)

C. Tightness at High SNR

We now examine the performance of the OBB for high SNR values. To formally define the high

SNR regime, we consider a sequence of measurements x(1), x(2), . . . of a single parameter vector θ. It is

assumed that, when conditioned on θ, all measurements x(i) are identically and independently distributed

(IID). Furthermore, we assume that the Fisher information matrix of a single observation J(θ) is well-

defined, positive definite and finite for pθ-almost all θ. We consider the sequence of problems of estimating

θ from the set of measurements {x(1), . . . ,x(N)}, for N = 1, 2, . . .. The asymptotically high SNR regime

is obtained as N →∞.
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When N tends to infinity, the MSE of the optimal estimator tends to zero. An important question,

however, concerns the rate of convergence of the minimum MSE. More precisely, given the optimal

estimator θ̂
(N)

of θ from {x(1), . . . ,x(N)}, one would like to determine the asymptotic distribution of
√

N(θ̂
(N) − θ), conditioned on θ. A fundamental result of asymptotic estimation theory can be loosely

stated as follows [28, §III.3], [29, §6.8]. Under some fairly mild regularity conditions, the asymptotic

distribution of
√

N(θ̂
(N) − θ), conditioned on θ, does not depend on the prior distribution pθ; rather,

√
N(θ̂

(N)− θ) |θ converges in distribution to a Gaussian random vector with zero mean and covariance

matrix J−1(θ). It follows that

lim
N→∞

NE
{
‖θ̂(N) − θ‖2

}
= E

{
Tr[J−1(θ)]

}
. (32)

Since the minimum MSE tends to zero at high SNR, any lower bound on the minimum MSE must also

tend to zero as N →∞. However, one would further expect a good lower bound to follow the behavior of

(32). In other words, if βN represents the lower bound for estimating θ from {x(1), . . . ,x(N)}, a desirable

property is NβN → E
{
Tr[J−1(θ)]

}
. The following theorem, whose proof is found in Appendix E,

demonstrates that this is indeed the case for the OBB. Except for a very brief treatment by Bellini and

Tartara [6], no previous Bayesian bound has shown such a result.

Theorem 6. Let θ be a random vector whose pdf pθ(θ) is nonzero over an open set Θ ⊆ Rn. Let

x(1), x(2), . . . be a sequence of measurement vectors, such that x(1)|θ,x(2)|θ, . . . are IID. Let J(θ) be

the Fisher information matrix for estimating θ from x(1), and suppose J(θ) is finite and positive definite

for pθ-almost all θ. Let βN be the optimal-bias bound (20) for estimating θ from the observation sequence

{x(1), . . . ,x(N)}. Then,

lim
N→∞

NβN = E
{
Tr(J−1(θ))

}
. (33)

Note that for Theorem 6 to hold, we require only that J(θ) be finite and positive definite. By contrast,

the various theorems guaranteeing asymptotic efficiency of Bayesian estimators all require substantially

stronger regularity conditions [28, §III.3], [29, §6.8]. One reason for this is that asymptotic efficiency

describes the behavior of θ̂ conditioned on each possible value of θ, and is thus a stronger result than

the asymptotic Bayesian MSE.

VI. EXAMPLE: UNIFORM PRIOR

The original bound of Young and Westerberg [5] predates most Bayesian bounds, and, surprisingly, it

has never been cited by or compared with later results. In this section, we measure the performance of the
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original bound and of its extension to the vector case against that of various other techniques. We consider

the case in which θ is uniformly distributed over an n-dimensional ball Θ = {θ : ‖θ‖ < r} ⊆ Rn, so

that

pθ(θ) =
1

Vn(r)
1Θ (34)

where 1S equals 1 when θ ∈ S and 0 otherwise, and

Vn(r) =
πn/2rn−1

Γ(1 + n/2)
(35)

is the volume of an n-ball of radius r [35]. We further assume that the measurement x, when conditioned

on θ, has Gaussian distribution with mean θ and covariance matrix σ2I . We are interested in lower bounds

on the MSE achievable by an estimator of θ from x.

We begin by developing the OBB for this setting, as well as some alternative bounds. We then compare

the different approaches in a one-dimensional and a three-dimensional setting.

The Fisher information matrix for the given estimation problem is given by J(θ) = (1/σ2)I , so that the

conditions of Theorem 3 hold. It follows that the optimal bias function is given by b(θ) = b(‖θ‖)θ/‖θ‖,

where b(·) is a solution to the differential equation

b

σ2
= b′′ + (n− 1)

(
b′

θ
− b

θ2

)
(36)

with boundary conditions b(0) = 0, b′(r) = −1. The general solution to this differential equation is given

by

b(θ) = C1θ
1−n/2In/2

(
θ

σ

)
+ C2θ

1−n/2Kn/2

(
θ

σ

)
(37)

where Iα(z) and Kα(z) are the modified Bessel functions of the first and second types, respectively [36].

Since Kα(z) is singular at the origin, the requirement b(0) = 0 leads to C2 = 0. Differentiating (37)

with respect to θ, we obtain

b′(θ) = C1θ
−n/2

(
In/2

(
θ

σ

)
+

θ

σ
I1+n/2

(
θ

σ

))
(38)

so that the requirement b′(r) = −1 leads to

C1 = − rn/2

In/2(r/σ) + r/σI1+n/2(r/σ)
. (39)

Substituting this value of b(·) into (24) yields the OBB, which can be computed by evaluating a single one-

dimensional integral. Alternatively, in the one-dimensional case, the integral can be computed analytically,

as will be shown below.
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Despite the widespread use of finite-support prior distributions [4], [10], the regularity conditions of

many bounds are violated by such prior pdf functions. Indeed, the Bayesian CRB of Van Trees [3], the

Bobrovski–Zakai bound [8], and the Bayesian Abel bound [12] all assume that pθ(θ) has infinite support,

and thus cannot be applied in this scenario.

Techniques from the Ziv–Zakai family are applicable to constrained problems. An extension of the

Ziv–Zakai bound for vector parameter estimation was developed by Bell et al. [11]. From [11, Property 4],

the MSE of the ith component of θ is bounded by

E
{

(θi − θ̂i)2
}
≥

∫ ∞

0
V

{
max

δ:eT
i δ=h

A(δ)Pmin(δ)
}

h dh (40)

where ei is a unit vector in the direction of the ith component, V (·) is the valley-filling function defined

by

V {f(h)} = max
η≥0

f(h + η), (41)

A(δ) ,
∫

Rn

min (pθ(θ), pθ(θ + δ)) dθ, (42)

and Pmin(δ) is the minimum probability of error for the problem of testing hypothesis H0 : θ = θ0 vs.

H1 : θ = θ0 + δ. In the current setting, Pmin(δ) is given by Pmin(δ) = Q(‖δ‖/2σ), where Q(z) =

(2π)−1/2
∫∞
z e−t2/2dt is the tail function of the normal distribution. Also, we have

A(δ) =
V C

n (r, ‖δ‖)
Vn(r)

(43)

where

V C
n (r, h) =

∫

Rn

1Θ1Θ+he1dθ (44)

and Θ + he1 = {θ + he1 : θ ∈ Θ}. Thus, V C
n (r, h) is the volume of the intersection of two n-balls

whose centers are at a distance of h units from one another. Substituting these results into (40), we have

E
{

(θi − θ̂i)2
}
≥

∫ ∞

0
V

{
max

δ:eT
i δ=h

V C
n (r, ‖δ‖)
Vn(r)

Q

(‖δ‖
2σ

)}
h dh. (45)

Note that both V C
n (r, ‖δ‖) and Q(‖δ‖/2σ) decrease with ‖δ‖. Therefore, the maximum in (45) is obtained

for δ = hei. Also, since the argument of V {·} is monotonically decreasing, the valley-filling function

has no effect and can be removed. Finally, since V C
n (r, h) = 0 for h > 2r, the integration can be limited

to the range [0, 2r]. Thus, the extended Ziv–Zakai bound is given by

E
{
‖θ − θ̂‖2

}
≥

∫ 2r

0
n

V C
n (r, h)
Vn(r)

Q

(
h

2σ

)
h dh. (46)

We now compute the Weiss–Weinstein bound for the setting at hand. This bound is given by

E
{
‖θ − θ̂‖2

}
≥ Tr(HG−1HT ) (47)
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where H = [h1, . . . ,hn] is a matrix containing n test vectors, G is a matrix whose elements are given

by

Gij =
E

{[
Lsi(x;θ + hi, θ)− L1−si(x; θ − hi, θ)

] [
Lsj (x;θ + hj , θ)− L1−sj (x;θ − hj , θ)

]}

E{Lsi(x; θ + hi)}E{Lsj (x; θ + hj)} , (48)

and

L(x; θ1, θ2) ,
pθ(θ1)px|θ(x|θ1)
pθ(θ2)px|θ(x|θ2)

. (49)

The vectors h1, . . . ,hn and the scalars s1, . . . , sn are arbitrary, and can be chosen to maximize the bound

(47). For the bound to be computationally tractable, we restrict attention to hi = hei and si = 1/2, as

suggested by [10]. This results in a dependency on a single scalar parameter h.

Under these conditions, Gij can be written as

Gij =
M̃(hi − hj ,−hj) + M̃(hi − hj , hi)− M̃(hi + hj , hj)− M̃(hi + hj ,hi)

M(hi)M(hj)
(50)

where

M(h) , E
{

L1/2(x; θ + h)
}

(51)

and

M̃(h1, h2) , E
{

L1/2(x; θ + h1)1Θ+h2

}
. (52)

Note that we have used the corrected version of the Weiss–Weinstein bound [37]. Substituting the

probability distribution of x and θ into the definitions of M(h) and M̃(h1, h2), we have

M(h) = E
{

e−‖θ+h−x‖2/4σ2
e‖θ−x‖2/4σ2

1Θ+h

}

=
V C

n (r, ‖h‖)
Vn(r)

e−‖h‖
2/8σ2

(53)

and, similarly,

M̃(h1,h2) =
e−‖h1‖2/8σ2

Vn(r)

∫
1Θ1Θ+h11Θ+h2dθ. (54)

Thus, M(h) is a function only of ‖h‖, and M̃(h1, h2) is a function only of ‖h1‖, ‖h2‖, and ‖h1−h2‖.

Since hi = hei, it follows that, for i 6= j, the numerator of (50) vanishes. Thus, G is a diagonal matrix,

whose diagonal elements equal

Gii = 2
M̃(0, he1)− M̃(2he1, he1)

M2(he1)
. (55)

The Weiss–Weinstein bound is given by substituting this result into (47) and maximizing over h, i.e.,

E
{
‖θ − θ̂‖2

}
≥ max

h∈[0,2r]

nh2M2(he1)
2(M̃(0, he1)− M̃(2he1, he1))

. (56)
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Fig. 2. Ratio between the MSE bounds and the optimal achievable MSE. θ ∼ U [−r, r] and x|θ ∼ N(θ, σ2).

The value of h yielding the tightest bound can be determined by performing a grid search.

To compare the OBB with the alternative approaches developed above, we first consider the case in

which θ is uniformly distributed in the range Θ = (−r, r). Let x = θ + w be a single noisy observation,

where w is zero-mean Gaussian noise, independent of θ, with variance σ2. We wish to bound the MSE

of an estimator of θ from x.

The optimal bias function is given by (37). Using the fact that I1/2(t) =
√

2/π sinh(t)/
√

t, we obtain

b(θ) = −σ
sinh(θ/σ)
cosh(r/σ)

(57)

which also follows [5] from Corollary 1. Substituting this expression into (20), we have that, for any

estimator θ̂,

E
{

(θ − θ̂)2
}
≥ σ2

(
1− tanh(r/σ)

r/σ

)
. (58)

In the one-dimensional case, we have V1(r) = 2r and V C
1 (r, h) = max(2r−h, 0), so that the extended

Ziv–Zakai bound (46) and the Weiss–Weinstein bound (56) can be simplified somewhat, although they

are still substantially more complicated to compute than the OBB (58). Yet, in this setting, the OBB is

significantly tighter. This is demonstrated in Fig. 2, which plots the ratio between the different bounds

and the exact optimal MSE. The optimal MSE was computed by Monte Carlo approximation of the error

of the optimal estimator E{θ̂|x}, which was itself computed by numerical integration.

Apart from the reduction in computational complexity, the simplicity of (58) also emphasizes several

features of the estimation problem. First, the dependence of the problem on the dimensionless quantity
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Fig. 3. Ratio between the MSE bounds and the optimal achievable MSE. θ distributed uniformly on a 3-ball, x|θ ∼ N(θ, σ2I).

r/σ, rather than on r and σ separately, is clear. This is to be expected, as a change in units of

measurement would multiply both r and σ by a constant. Second, the asymptotic properties demonstrated

in Theorems 5 and 6 can be easily verified. For r À σ, the bound converges to the noise variance σ2,

corresponding to an uninformative prior whose optimal estimator is θ̂ = x; whereas, for σ À r, a Taylor

expansion of tanh(z)/z immediately shows that the bound converges to r2/3, corresponding to the case

of uninformative measurements, where the optimal estimator is θ̂ = 0. Thus, the bound (58) is tight both

for very low and for very high SNR, as expected.

The improvements provided by the OBB continue to hold in higher dimensions as well, although,

in this case, it is not possible to provide a closed form of any of the bounds. For example, Fig. 3

plots the Weiss–Weinstein, extended Ziv–Zakai, and optimal-bias bounds, as a ratio of the true minimum

MSE, in the three-dimensional case. Here, computation of the minimum MSE requires multi-dimensional

numerical integration, and is by far more computationally complex than the calculation of the bounds.

Again, it is evident from this figure that the OBB is a very tight bound in all ranges of operation, and

is considerably closer to the true value than either of the alternative approaches.

VII. CONCLUSION

Although often considered distinct settings, there are insightful connections between the Bayesian and

deterministic estimation problems. One such relation is the use of the deterministic CRB in a Bayesian

problem. The combination of this generally tight deterministic bound with the well-defined Bayesian
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optimality criterion results in a tight Bayesian bound. Application to the location estimation problem

demonstrates that the technique is both simpler and tighter than alternative approaches.
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APPENDIX

PROOFS OF THEOREMS

A. Some Technical Lemmas

The proof of several theorems in the paper relies on the following technical results.

Lemma 1. Consider the minimization problems

M` = inf
b∈S

Z`[b], ` = 1, 2, 3 (59)

where J(θ) is positive definite and bounded a.e. (pθ),

Z1[b] ,
∫

Θ
‖b(θ)‖2pθ(dθ)

Z2[b] ,
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ)

Z3[b] , Z1[b] + Z2[b] (60)

and S ⊂ H1 is convex, closed, and bounded under the H1 norm (16). Then, for each `, there exists a

function b(0) ∈ S such that Z[b(0)] = M . If ` = 1 or ` = 3, then the minimizer of (59) is unique.

Note that Z3[b] equals Z[b] of (12); the notation Z3[b] is introduced for simplicity. Also note that

under mild regularity assumptions on J(θ), uniqueness can be demonstrated for ` = 2 as well, but this

is not necessary for our purposes.

Proof: The space H1 is a Cartesian product of n Sobolev spaces H1(Θ), each of which is a separable

Hilbert space [38, §3.7.1]. Therefore, H1 is also a separable Hilbert space. It follows from the Banach–

Alaoglu theorem [39, §3.17] that all bounded sequences in H1 have weakly convergent subsequences

[33, §2.18]. Recall that a sequence f (1), f (2), . . . ∈ H1 is said to converge weakly to f (0) ∈ H1 (denoted

f (i) ⇀ f (0)) if

L[f (j)] → L[f (0)] (61)
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for all continuous linear functionals L[·] [33, §2.9].

Given a particular value ` ∈ {1, 2, 3}, let b(i) be a sequence of functions in S such that Z`[b(i)] → M`.

This is a bounded sequence since S is bounded, and therefore there exists a subsequence b(ik) which

converges weakly to some b
(`)
opt ∈ H1. Furthermore, since S is closed,3 we have b

(`)
opt ∈ S. We will now

show that Z`[b
(`)
opt] = M`.

To this end, it suffices to show that Z`[·] is weakly lower semicontinuous, i.e., for any sequence

f (i) ∈ H1 which converges weakly to f (0) ∈ H1, we must show that

Z`[f (0)] ≤ lim inf
i→∞

Z`[f (i)]. (62)

Consider a weakly convergent sequence f (j) ⇀ f (0). Then, (61) holds for any continuous linear functional

L[·]. Specifically, choose the continuous linear functional

L1[f ] =
∫

Θ
f (0)(θ)f(θ)pθ(dθ). (63)

We then have

Z1[f (0)] = L1[f (0)]

= lim
j→∞

L1[f (j)]

= lim
j→∞

∫

Θ

n∑

i=1

f
(0)
i (θ)f (j)

i (θ)pθ(dθ)

≤ lim inf
j→∞

√∫

Θ
‖f (0)(θ)‖2pθ(dθ) ·

∫

Θ
‖f (j)(θ)‖2pθ(dθ)

=
√

Z1[f (0)] lim inf
j→∞

√
Z1[f (j)] (64)

where we have used the Cauchy–Schwarz inequality. It follows that
√

Z1[f (0)] ≤ lim inf
j→∞

√
Z1[f (j)] (65)

and therefore Z1[f (0)] ≤ lim infj→∞ Z1[f (j)], so that Z1[·] is weakly lower semicontinuous.

Similarly, consider the continuous linear functional

L2[f ] =
∫

Θ
Tr

((
I +

∂f (0)

∂θ

)
J−1(θ)

(
I +

∂f

∂θ

)T
)

pθ(dθ) (66)

3In fact, we require that S be “weakly closed” in the sense that weakly convergent sequences in S converge to an element

in S. This notion is equivalent to the ordinary definition of closure [39, §3.13].
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for which we have

Z2[f (0)] = L2[f (0)]

= lim
j→∞

L2[f (j)]

= lim
j→∞

∫

Θ
Tr




(
I +

∂f (0)

∂θ

)
J−1(θ)

(
I +

∂f (j)

∂θ

)T

 pθ(dθ). (67)

Note that, for any positive definite matrix W , Tr(AWBT ) is an inner product of the two matrices A

and B. Therefore, by the Cauchy–Schwarz inequality,

Tr(AWBT ) ≤
√

Tr(AWAT )Tr(BWBT ). (68)

Applying this to (67), we have

Z2[f (0)] ≤ lim inf
j→∞

∫

Θ

√√√√√Tr




(
I +

∂f (0)

∂θ

)
J−1(θ)

(
I +

∂f (0)

∂θ

)T



·

√√√√√Tr




(
I +

∂f (j)

∂θ

)
J−1(θ)

(
I +

∂f (j)

∂θ

)T

pθ(dθ). (69)

Once again using the Cauchy–Schwarz inequality results in

Z2[f (0)] ≤ lim inf
j→∞

√
Z2[f (0)]Z2[f (j)] (70)

and therefore Z2[f (0)] ≤ lim infj→∞ Z2[f (j)], so that Z2[·] is weakly lower semicontinuous. Since

Z3[f ] = Z1[f ] + Z2[f ], it follows that Z3[·] is also weakly lower semicontinuous.

Now recall that b(ik) ⇀ b
(`)
opt and Z`[b(ik)] → M`. By the definition (62) of lower semicontinuity, it

follows that

Z`[b
(`)
opt] ≤ lim inf

k→∞
Z`[b(ik)] = M` (71)

and since M` is the infimum of Z`[b], we obtain Z[b(`)
opt] = M . Thus b

(`)
opt is a minimizer of (59).

It remains to show that for ` ∈ {1, 3}, the minimizer of (59) is unique. To this end, we first show that

Z1[·] is strictly convex. Let b(0), b(1) ∈ S be two essentially different functions, i.e.,

pθ

({
θ ∈ Θ : b(0)(θ) 6= b(1)(θ)

})
> 0. (72)
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Let b(2)(θ) = λb(0)(θ) + (1 − λ)b(1)(θ) for some 0 < λ < 1, so that b(2) ∈ S by convexity. We then

have

Z1[b(2)] =
∫

Q

∥∥∥λb(0)(θ) + (1− λ)b(1)(θ)
∥∥∥

2
pθ(dθ) +

∫

Θ\Q

∥∥∥λb(0)(θ) + (1− λ)b(1)(θ)
∥∥∥

2
pθ(dθ)

<

∫

Q

[
λ‖b(0)(θ)‖2 + (1− λ)‖b(1)(θ)‖2

]
pθ(θ) +

∫

Θ\Q

[
λ‖b(0)(θ)‖2 + (1− λ)‖b(1)(θ)‖2

]
pθ(θ)

= λZ1[b(0)] + (1− λ)Z2[b(1)] (73)

where the inequality follows from strict convexity of the squared Euclidean norm ‖x‖2. Thus Z1[·] is

strictly convex, and hence has a unique minimum.

Note that Z3[b] = Z1[b]+Z2[b]. Since Z1[·] is strictly convex and Z2[·] is convex, it follows that Z3[·]
is strictly convex, and thus also has a unique minimum. This completes the proof.

The following lemma can be thought of as a triangle inequality for a normed space of matrix functions

over Θ.

Lemma 2. Let pθ be a probability measure over Θ, and let M : Θ → Rn×n be a matrix function.

Suppose ∫

Θ
‖I + M(θ)‖2

F pθ(dθ) ≤ α (74)

for some constant α. It follows that
∫

Θ
‖M(θ)‖2

F pθ(dθ) ≤ (
√

α +
√

n)2. (75)

Proof: By the triangle inequality,

‖M(θ)‖F = ‖M(θ) + I − I‖F ≤ ‖M(θ) + I‖F + ‖I‖F . (76)

Since ‖I‖2
F = n, we have

∫

Θ
‖M(θ)‖2

F pθ(dθ) ≤
∫

Θ

[
‖I + M(θ)‖2

F + n + 2
√

n ‖I + M(θ)‖F

]
pθ(dθ). (77)

Using the fact that ∫

Θ
‖I + M(θ)‖F pθ(dθ) ≤

√∫

Θ
‖I + M(θ)‖2

F pθ(dθ) (78)

and combining with (74), it follows that
∫

Θ
‖M(θ)‖2

F pθ(dθ) ≤ α + n + 2
√

nα (79)

which completes the proof.
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B. Proof of Proposition 1

The following proof of Proposition 1 makes use of the results developed in Appendix A.

Proof of Proposition 1: Recall that Z3[b] of (60) equals Z[b]. Thus, we would like to apply Lemma 1

(with ` = 3) to prove the unique existence of a minimizer of (17). However, Lemma 1 requires that the

minimization be performed over a closed, bounded, and convex set S, whereas (17) is performed over the

unbounded set H1. To resolve this issue, we must show that the minimization (17) can be reformulated

as a minimization over a closed, bounded, and convex set S.

To this end, note that

Z[0] =
∫

Θ
Tr(J−1(θ))pθ(dθ) , U (80)

and therefore M ≤ U < ∞. Thus, it suffices to perform the minimization (17) over those functions for

which Z[b] ≤ U . We now show that this can be achieved by minimizing over a closed, bounded, and

convex set S. First, note that Z[b] ≥ ‖b‖2
L2 , so that one may choose to minimize (17) only over functions

b for which

‖b‖2
L2 ≤ U. (81)

Similarly, we have

Z[b] ≥
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) (82)

so that it suffices to minimize (17) over functions b for which
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) ≤ U. (83)

Note that J(θ) is bounded a.e., and therefore λmin(J−1) ≥ 1/K a.e., for some constant K. It follows

that

Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)
≥ 1

K

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

a.e.(pθ). (84)

Combining with (83) yields ∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ KU. (85)

From Lemma 2, we then have
∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤
(√

n +
√

KU
)2

. (86)

From (81) and (86) it follows that the minimization (17) can be limited to the closed, bounded, convex

set

S =
{

b ∈ H1 : ‖b‖2
H1 ≤ U +

(√
KU +

√
n
)2

}
. (87)
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Applying Lemma 1 proves the unique existence of a minimizer of (17). The proof that 0 < s̄ < ∞
appears immediately after the statement of Proposition 1.

C. Proof of Theorem 2

The following is the proof of Theorem 2 concerning the calculation of the OBB.

Proof of Theorem 2: Consider the more general problem of minimizing the functional

Z[b] =
∫

Θ
F [b, θ]dθ (88)

where F [b, θ] is smooth and convex in b : Θ → Rn, and Θ ⊂ Rn is a bounded set with a smooth

boundary Λ. Then, Z[b] is also smooth and convex in b, so that b is a global minimum of Z[b] if and

only if the differential δZ[h] equals zero at b for all admissible functions h : Θ → Rn [40].

By a standard technique [40, §35], it can be shown that

δZ[h] = ε
∑

i

∫

Θ


∂F

∂bi
−

∑

j

∂

∂θj

∂F

∂b
(j)
i


hi(θ)dθ

+ ε
∑

i

∫

Λ

(
∂F

∂b
(1)
i

, . . . ,
∂F

∂b
(n)
i

)T

ν(θ) hi(θ) dσ (89)

where ε is an infinitesimal quantity, b
(j)
i = ∂bi/∂θj , and ν(θ) is an outward-pointing normal at the

boundary point θ ∈ Λ. We now seek conditions for which δZ[h] = 0 for all h(θ). Consider first

functions h(θ) which equal zero on the boundary Λ. In this case, the second integral vanishes, and we

obtain the Euler–Lagrange equations

∀i, ∂F

∂bi
−

∑

j

∂

∂θj

∂F

∂b
(j)
i

= 0. (90)

Substituting this result back into (89), and again using the fact that δZ[h] = 0 for all h, we obtain the

boundary condition

∀i, ∀θ ∈ Λ,

(
∂F

∂b
(1)
i

, . . . ,
∂F

∂b
(n)
i

)T

ν(θ) = 0. (91)

Plugging F [b, θ] = CRB[b,θ]pθ(θ) into (90) and (91) provides the required result.

D. Proof of Theorem 3

Before proving Theorem 3, we provide the following two lemmas, which demonstrate some symmetry

properties of the CRB.
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Lemma 3. Under the conditions of Theorem 3, the functional Z[b] of (12) is rotation and reflection

invariant, i.e., Z[b] = Z[Ub] for any unitary matrix U .

Proof: We first demonstrate that Z[b] is rotation invariant. From the definitions of Z[b] and

CRB[b, θ], we have

Z[b] =
∫

Θ
Tr

[(
I +

∂b

∂θ

) (
I +

∂b

∂θ

)T
]

q(‖θ‖)
J(‖θ‖)dθ +

∫

Θ
‖b(θ)‖2q(‖θ‖)dθ. (92)

The second integral is clearly rotation invariant, since a rotation of b does not alter its norm. It remains

to show that the first integral, which we denote by I1[b], does not change when b is rotated. To this

end, we begin by considering a rotation about the first two coordinates, such that b is transformed to

b̃ , Rφb, where the rotation matrix Rφ is defined such that

Rφb = (b1 cosφ + b2 sinφ,−b1 sinφ + b2 cosφ, b3, . . . , bn)T . (93)

We must thus show that I1[b] = I1[b̃]. Let us perform the change of variables θ 7→ θ̃, where θ̃ = R(−φ)θ.

Rewriting the trace in (92) as a sum, we have

I1[b̃] =
∫

Θ

∑

i,j

(
δij +

∂b̃i

∂θj

)2
q(‖θ̃‖)
J(‖θ̃‖)dθ̃ (94)

where we have used the facts that ‖θ‖ = ‖θ̃‖ and that Θ does not change under the change of variables.

We now demonstrate some properties of the transformation of b and θ. First, we have, for any j,
(

∂b̃1

∂θj

)2

+

(
∂b̃2

∂θj

)2

=
(

∂b1

∂θj
cosφ +

∂b2

∂θj
sinφ

)2

+
(
−∂b1

∂θj
sinφ +

∂b2

∂θj
cosφ

)2

=
(

∂b1

∂θj

)2

+
(

∂b2

∂θj

)2

. (95)

Also, for any i,
(

∂bi

∂θ̃1

)2

+
(

∂bi

∂θ̃2

)2

=
(

∂bi

∂θ1

∂θ1

∂θ̃1

+
∂bi

∂θ2

∂θ2

∂θ̃1

)2

+
(

∂bi

∂θ1

∂θ1

∂θ̃2

+
∂bi

∂θ2

∂θ2

∂θ̃2

)2

=
(

∂bi

∂θ1

)2

+
(

∂bi

∂θ2

)2

(96)

where we used the fact that θ = Rφθ̃. Third, we have

∂b̃1

∂θ1
=

∂b1

∂θ̃1

cos2 φ +
∂b1

∂θ̃2

sinφ cosφ +
∂b2

∂θ̃1

sinφ cosφ +
∂b2

∂θ̃2

sin2 φ,

∂b̃2

∂θ2
=

∂b1

∂θ̃1

sin2 φ− ∂b1

∂θ̃2

sinφ cosφ− ∂b2

∂θ̃1

sinφ cosφ +
∂b2

∂θ̃2

cos2 φ, (97)
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so that
∂b̃1

∂θ1
+

∂b̃2

∂θ2
=

∂b1

∂θ̃1

+
∂b2

∂θ̃2

. (98)

We now show that
∑

i,j

(
δij +

∂b̃i

∂θj

)2

=
∑

i,j

(
δij +

∂bi

∂θ̃j

)2

. (99)

For terms with i, j ≥ 3, we have bi = b̃i and θj = θ̃j , so that replacing b̃ with b and θ with θ̃ does not

change the result. The terms with i = 1, 2 and j ≥ 3 do not change because of (95), while the terms

with i ≥ 3 and j = 1, 2 do not change because of (96). It remains to show that the terms i, j = 1, 2 do

not modify the sum. To this end, we write out these four terms as
(

1 +
∂b̃1

∂θ1

)2

+

(
1 +

∂b̃2

∂θ2

)2

+

(
∂b̃1

∂θ2

)2

+

(
∂b̃2

∂θ1

)2

= 2 + 2
∂b̃1

∂θ1
+ 2

∂b̃2

∂θ2
+

(
∂b̃1

∂θ1

)2

+

(
∂b̃1

∂θ2

)2

+

(
∂b̃2

∂θ1

)2

+

(
∂b̃2

∂θ2

)2

= 2 + 2
∂b1

∂θ̃1

+ 2
∂b2

∂θ̃2

+
(

∂b1

∂θ̃1

)2

+
(

∂b1

∂θ̃2

)2

+
(

∂b2

∂θ̃1

)2

+
(

∂b2

∂θ̃2

)2

=
(

1 +
∂b1

∂θ̃1

)2

+
(

1 +
∂b2

∂θ̃2

)2

+
(

∂b1

∂θ̃2

)2

+
(

∂b2

∂θ̃1

)2

(100)

where, in the second transition, we have used (95), (96), and (98). It follows that I1[b̃] of (94) is equal to

I1[b], and hence Z[b] = Z[b̃]. The result similarly holds for rotations about any other two coordinates.

Since any rotation can be decomposed into a sequence of two-coordinate rotations, we conclude that

Z[b] is rotation invariant.

Next, we prove that Z[b] is invariant to reflections through hyperplanes containing the origin. Since

Z[b] is invariant to rotations, it suffices to choose a single hyperplane, say {θ : θ1 = 0}. Let

b̃ , (−b1(θ), b2(θ), . . . , bn(θ))T (101)

be the reflection of b, and consider the corresponding change of variables

θ̃ , (−θ1, θ2, . . . , θn)T . (102)

By the symmetry assumptions, pθ and J are unaffected by the change of variables; furthermore, ∂b̃/∂θ̃ =

∂b/∂θ. It follows that CRB[b̃, θ̃] = CRB[b, θ], and therefore Z[b] = Z[b̃].

Lemma 4. Suppose b(θ) is radial and rotation invariant, i.e., b(θ) = t(‖θ‖2)θ for some function t ∈ H1.

Also suppose that J(θ) = J(‖θ‖)I , where J(·) is a scalar function. Then, CRB[b, θ] of (11) is rotation

invariant in θ, i.e., CRB[b,Rθ] = CRB[b,θ] for any rotation matrix R.
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Proof: We will show that CRB[b,θ] depends on θ only through ‖θ‖2, and is therefore rotation

invariant. For the given value of b(θ) and J(θ), we have

CRB[b, θ] = ‖b(θ)‖2 + Tr

[(
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
]

= t2‖θ‖2 +
1

J(‖θ‖) Tr

[(
I +

∂tθ

∂θ

)(
I +

∂tθ

∂θ

)T
]

(103)

where, for notational convenience, we have omitted the dependence of t on ‖θ‖2. It remains to show

that the trace in the above expression is a function of θ only through ‖θ‖2. To this end, we note that

∂bi

∂θj
= tδij + t′θi

∂‖θ‖2

∂θj
= tδij + 2t′θiθj (104)

where δij is the Kronecker delta. It follows that
(

δij +
∂bi

∂θj

)2

= (1 + t)2δij + 4(1 + t)t′θiθjδij + 4t′2θ2
i θ

2
j . (105)

Therefore

Tr

[(
I +

∂b

∂θ

)(
I +

∂b

∂θ

)T
]

=
∑

i,j

(
δij +

∂bi

∂θj

)2

= n(1 + t)2 + 4t′2
∑

i,j

θ2
i θ

2
j + 4(1 + t)t′

∑

i

θ2
i

= n(1 + t)2 + 4t′2‖θ‖4 + 4(1 + t)t′‖θ‖2. (106)

Thus, CRB[b, θ] depends on θ only through ‖θ‖2, completing the proof.

Proof of Theorem 3: We have seen in Theorem 2 that the solution of (20) is unique. Now suppose

that the optimum b is not rotation invariant, i.e., there exists a rotation matrix R such that Rb(θ) is not

identical to b(θ). By Lemma 3, Rb(θ) is also optimal, which is a contradiction.

Furthermore, suppose that b is not radial, i.e., for some value of θ, b(θ) contains a component

perpendicular to the vector θ. Consider a hyperplane passing through the origin, whose normal is the

aforementioned perpendicular component. By Lemma 3, The reflection of b through this hyperplane is

also an optimal solution of (20), which is again a contradiction. Therefore, the optimum b is spherically

symmetric and radial, so that it can be written as

b(θ) = b(‖θ‖) θ

‖θ‖ (107)

where b(·) is a scalar function.
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To determine the value of b(·), it suffices to analyze the differential equation (21) along a straight

line from the origin to the boundary. We choose a line along the θ1 axis, and begin by calculating the

derivatives of b1(θ), q(‖θ‖), and J(‖θ‖) along this axis. The derivative of q(‖θ‖) is given by

∂q

∂θj
= q′(ρ)

θj

ρ
(108)

where we have denoted ρ = ‖θ‖, so that ρ is weakly differentiable and

∂ρ

∂θj
=

θj

ρ
. (109)

Along the θ1 axis, we have θ1 = ρ while θ2 = · · · = θn = 0, so that

∂q

∂θj

∣∣∣∣
θ=ρe1

= q′(ρ)δj1. (110)

Similarly, since J(θ) = J(ρ)I ,
∂(J−1)jk

∂θj
= − J ′(ρ)

J2(ρ)
θj

ρ
δjk (111)

so that along the θ1 axis
∂(J−1)jk

∂θj

∣∣∣∣
θ=ρe1

= − J ′(ρ)
J2(ρ)

δjkδj1. (112)

From (107), we have
∂bi

∂θj
= b′(ρ)

θiθj

ρ2
+

b(ρ)
ρ

(
δij − θiθj

ρ2

)
. (113)

Thus, on the θ1 axis, we have

∂b1

∂θj

∣∣∣∣
θ=ρe1

= b′(ρ)δj1. (114)

The second derivative of bi(θ) can be shown to equal

∂2bi

∂θj∂θk
= b′′(ρ)

θiθjθk

ρ3
+

(
b′(ρ)

ρ
− b(ρ)

ρ2

)(
θi

ρ
δjk +

θj

ρ
δik +

θk

ρ
δij − 3

θiθjθk

ρ3

)
. (115)

Therefore, on the θ1 axis

∂2b1

∂θ2
1

∣∣∣∣
θ=ρe1

= b′′(ρ)

∂2b1

∂θ2
j

∣∣∣∣∣
θ=ρe1

=
b′(ρ)

ρ
− b(ρ)

ρ2
(j 6= 1)

∂2b1

∂θj∂θk

∣∣∣∣
θ=ρe1

= 0 (j, k 6= 1). (116)

Substituting these derivatives into (21), we obtain

q(ρ)b(ρ) =
q(ρ)
J(ρ)

(
b′′(ρ) + (n− 1)

b′(ρ)
ρ

− (n− 1)
b(ρ)
ρ2

)
+ (1 + b′(ρ))

(
q′(ρ)
J(ρ)

− q(ρ)
J ′(ρ)
J2(ρ)

)
(117)

April 28, 2008 DRAFT



31

which is equivalent to (25).

To obtain the boundary conditions, observe first that Lemma 3 implies that b(0) = 0, whence we

conclude that b(0) = 0. Next, evaluate the boundary condition (22) at boundary point θ = re1, where

the surface normal ν(θ) equals e1, so that

1 + b′(ρ) = 1 +
∂b1

∂θ1
= 0, θ = re1 (118)

which is equivalent to the boundary condition b′(r) = −1.

To find the OBB (24), we must now calculate Z[b] for the obtained bias function (107). To this end,

note that, by Lemma 4, CRB[b, θ] is rotation invariant in θ for the required b(θ). Thus, the integrand

CRB[b, θ]q(‖θ‖) is constant on any (n− 1)-sphere centered on the origin, so that

Z[b] =
∫ r

0
CRB[b, ρe1]q(ρ)Sn(ρ)dρ (119)

where

Sn(ρ) =
2πn/2

Γ(n/2)
ρn−1 (120)

is the hypersurface area of an (n − 1)-sphere of radius ρ [35]. It thus suffices to calculate the value of

CRB[b, θ] at points along the θ1 axis. From (113), it follows that

∂b

∂θ

∣∣∣∣
θ=ρe1

= diag
(

b′(ρ),
b(ρ)
ρ

, . . . ,
b(ρ)
ρ

)
. (121)

Substituting this into the definition of CRB[b, θ], we obtain

CRB[b, ρe1] = b2(ρ) +
1

J(ρ)
(1 + b′(ρ))2 +

n− 1
J(ρ)

(
1 +

b(ρ)
ρ

)2

. (122)

Combining (122) with (119) yields (24), as required.

E. Proofs of Asymptotic Properties

Theorems 5 and 6 demonstrate asymptotic tightness of the OBB. The proofs of these two theorems

follow.

Proof of Theorem 5: We begin the proof by studying a certain optimization problem, whose relevance

will be demonstrated shortly. Let t ≥ 0 be a constant and consider the problem

u(t) = inf
b∈H1

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ)

s.t.
∫

Θ
‖b(θ)‖2pθ(dθ) ≤ t. (123)
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Notice that u(t) ≤ n for all t, since an objective having a value of n is achieved by the function b(θ) = 0.

Thus, it suffices to perform the minimization (123) over functions b ∈ H1 satisfying
∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ n. (124)

It follows from Lemma 2 that such functions also satisfy
∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ (2
√

n)2 = 4n. (125)

Therefore, (123) is equivalent to the minimization

u(t) = inf
b∈St

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) (126)

where

St =
{

b ∈ H1 :
∫

Θ
‖b(θ)‖2pθ(dθ) ≤ t,

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ 4n

}
. (127)

The set St is convex, closed, and bounded in H1. Applying Lemma 1 (with ` = 2) implies that there

exists a function bopt ∈ St which minimizes (126), and hence also minimizes (123).

Note that the objective in (123) is zero if and only if

∂bopt

∂θ
= −I a.e. (pθ). (128)

The only functions in H1 satisfying this requirement are the functions

b(θ) = k − θ a.e. (pθ) (129)

for some constant k ∈ Rn. Let µ , E{θ} and define

v , E
{‖θ − E{θ} ‖2

}
. (130)

For functions of the form (129), the constraint of (123) is given by
∫

Θ
‖k − θ‖2pθ(dθ) =

∫

Θ
‖k − µ + µ− θ‖2pθ(dθ)

= ‖k − µ‖2 + v

≥ v. (131)
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In (131), equality is obtained if and only if k = µ. Therefore, if t < v, no functions satisfying (128) are

feasible, and thus

u(t) = 0 if t ≥ v,

u(t) > 0 if t < v. (132)

We now return to the setting of Theorem 5. We must show that βN → v as N → ∞. We denote

functions corresponding to the problem of estimating θ from x(N) with a superscript (N). Thus, for

example, Z(N)[b] denotes the functional Z[b] of (12) for the problem corresponding to the measurement

vector x(N).

Since all eigenvalues of J (N)(θ) decrease monotonically with N for pθ-almost all θ, we have

CRB(N)[b, θ] ≤ CRB(N+1)[b,θ] (133)

for any b ∈ H1, for pθ-almost all θ, and for all N . Therefore

Z(N)[b] ≤ Z(N+1)[b]. (134)

for any b ∈ H1 and for all N . It follows that for all N

βN = min
b∈H1

Z(N)[b] ≤ min
b∈H1

Z(N+1)[b] = βN+1 (135)

so that βN is a non-decreasing sequence. Furthermore, note that

Z(N)[µ− θ] = v for all N (136)

where v is given by (130). Therefore, βN ≤ v for all N . Thus βN converges to some value q, and we

have

βN ≤ q ≤ v for all N. (137)

To prove the theorem, it remains to show that q = v.

Let b(N) be the minimizer of (17) when θ is estimated from x(N); this minimizer exists by virtue of

Proposition 1. We then have

βN = Z(N)[b(N)] ≤ q (138)

and therefore ∫

Θ
‖b(N)(θ)‖2pθ(dθ) ≤ q. (139)
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It follows that b(N) satisfies the constraint of the optimization problem (123) with t = q. As a consequence,

we have ∫

Θ

∥∥∥∥∥I +
∂b(N)

∂θ

∥∥∥∥∥
2

F

pθ(dθ) ≥ u(q). (140)

Define

λN , ess sup
θ∈Θ

λmax(J (N)(θ)) (141)

and note that λN > 0 for all N , since J (N)(θ) is positive definite. Thus

Z(N)[b(N)] ≥
∫

Θ
Tr




(
I +

∂b(N)

∂θ

)(
J (N)(θ)

)−1
(

I +
∂b(N)

∂θ

)T

 pθ(dθ)

≥ 1
λN

∫

Θ

∥∥∥∥∥I +
∂b(N)

∂θ

∥∥∥∥∥
2

F

pθ(dθ)

≥ u(q)
λN

. (142)

Assume by contradiction that q < v. From (132), it then follows that u(q) > 0. Since all eigenvalues of

J (N)(θ) decrease to zero, we have λN → 0, and thus

βN ≥ u(q)
λN

→∞. (143)

This contradicts the fact (137) that βN ≤ v. We conclude that q = v, as required.

Proof of Theorem 6: The proof is analogous to that of Theorem 5. We begin by considering the

optimization problem

w(t) = inf
b∈H1

∫

Θ
‖b(θ)‖2pθ(dθ)

s.t.
∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) ≤ t (144)

for some constant t ≥ 0. Let µ = E{θ} and note that b(θ) = µ − θ satisfies the constraint in (144)

for any t ≥ 0, and has an objective equal to v of (130). Thus, to determine w(t), it suffices to minimize

(144) over the set

St =
{

b ∈ H1 :
∫

Θ
‖b(θ)‖2pθ(dθ) ≤ v,

∫

Θ
Tr

((
I +

∂b

∂θ

)
J−1(θ)

(
I +

∂b

∂θ

)T
)

pθ(dθ) ≤ t

}
. (145)

Define

λ , ess sup
θ∈Θ

λmax(J(θ)). (146)
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Since J(θ) is positive definite almost everywhere, we have λ > 0. For any b ∈ St, we have

1
λ

∫

Θ

∥∥∥∥I +
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤ t (147)

and therefore, by Lemma 2, ∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ) ≤
(√

tλ +
√

n
)2

. (148)

Hence, for any b ∈ St,

‖b‖2
H1 =

∫

Θ
‖b(θ)‖2pθ(dθ) +

∫

Θ

∥∥∥∥
∂b

∂θ

∥∥∥∥
2

F

pθ(dθ)

≤ v +
(√

tλ +
√

n
)2

. (149)

Thus St is bounded for all t. It is straightforward to show that St is also closed and convex. Therefore,

employing Lemma 1 (with ` = 1) ensures that there exists a (unique) bopt ∈ St minimizing (144).

Note that the objective in (144) is 0 if and only if bopt(θ) = 0 almost everywhere. So, if 0 ∈ St, we

have w(t) = 0, and otherwise w(t) > 0. Let us define

s , E
{
Tr(J−1(θ))

}
(150)

and note that 0 ∈ St if and only if t ≥ s. Thus

w(t) = 0 for t ≥ s

w(t) > 0 otherwise. (151)

Let us now return to the setting of Theorem 6. For simplicity, we denote functions corresponding to the

problem of estimating θ from {x(1), . . . , x(N)} with a superscript (N). For example, from the additive

property of the Fisher information [2, §3.4], we have

J (N)(θ) = NJ(θ). (152)

It follows that

(N + 1)CRB(N+1)[b, θ] ≥ NCRB(N)[b, θ] (153)

for all b ∈ H1, all θ ∈ Θ, and all N . Therefore

(N + 1)Z(N+1)[b] ≥ NZ(N)[b] (154)

for all b ∈ H1, and hence

(N + 1)βN+1 = min
b∈H1

(
(N + 1)Z(N+1)[b]

)
≥ min

b∈H1

(
NZ(N)[b]

)
= NβN . (155)
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Thus {NβN} is a non-decreasing sequence. Furthermore, we have

NZ(N)[0] = s (156)

so that NβN ≤ s for all N . It follows that {NβN} is non-decreasing and bounded, and therefore

converges to some value r such that

NβN ≤ r ≤ s for all N. (157)

To prove the theorem, we must show that r = s.

Let b(N) ∈ H1 denote the minimizer of (17) when θ is estimated from {x(1), . . . , x(N)} (the existence

of b(N) is guaranteed by Proposition 1). We then have NβN = NZ(N)[b(N)] ≤ r, so that

∫

Θ
Tr




(
I +

∂b(N)

∂θ

)
J−1(θ)

(
I +

∂b(N)

∂θ

)T

 pθ(dθ) ≤ r. (158)

Thus, b(N) satisfies the constraint of (144) with t = r. As a consequence, we have
∫

Θ
‖b(N)(θ)‖2pθ(dθ) ≥ w(r) (159)

and therefore

NβN = NZ(N)[b(N)]

≥ N

∫

Θ
‖b(N)(θ)‖2pθ(dθ)

≥ Nw(r). (160)

Now suppose by contradiction that r < s. It follows from (151) that w(r) > 0. Hence, by (160),

NβN →∞, which contradicts the fact that NβN is bounded. We conclude that r = s, as required.
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