On Unbiased Estimation of Sparse Vectors Corrupted by Gaussian Noise

What is the best possible performance of unbiased estimators in the sparse setting?

Alexander Jung, Zvika Ben-Haim, Franz Hlawatsch, and Yonina C. Eldar

Signal Model

 $\mathbf{y} = \mathbf{x}_0 + \mathbf{w}$

White Gaussian noise

S-sparse, deterministic unknown $\mathbf{x}_0 \in \mathbb{R}^N, \|\mathbf{x}_0\|_0 \leq S < N$

Summary

- Analytical characterization of the best possible MSE performance of unbiased estimators
- Results provide:
 - Understanding of high-SNR performance
 - Identification of threshold region

Unbiasedness

• Unbiased estimator: $E_{\mathbf{x}_0}{\{\widehat{\mathbf{x}}\}} = \mathbf{x}_0$ for all \mathbf{x}_0 with $\|\mathbf{x}_0\|_0 \leq S$

The unbiasedness assumption is required for bounds on the MSE to be nontrivial.

Theorem: In the AWGN model without sparsity constraints, there exists only one unbiased estimator, namely, $\widehat{\mathbf{x}} = \mathbf{y}$.

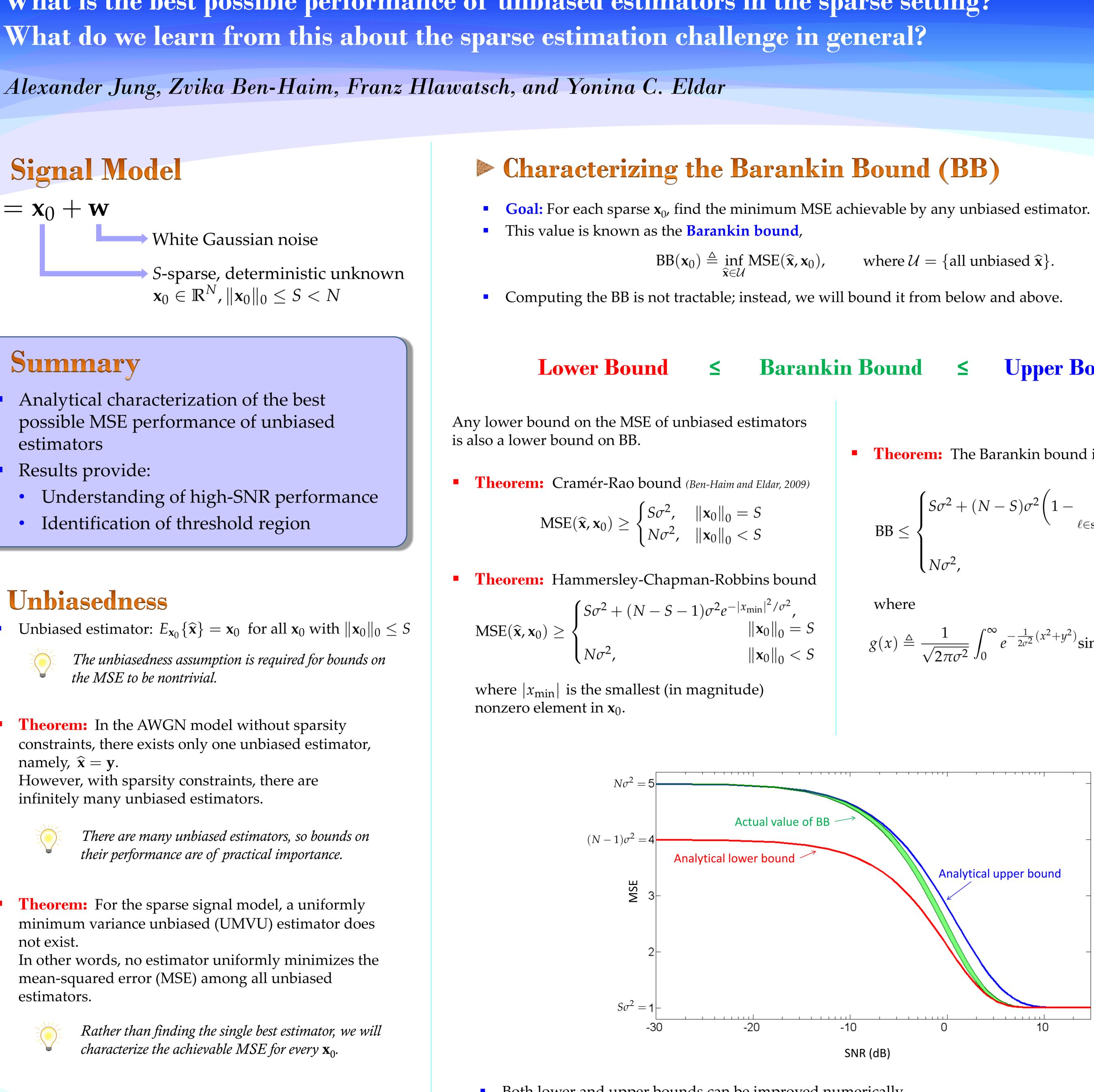
However, with sparsity constraints, there are infinitely many unbiased estimators.

There are many unbiased estimators, so bounds on their performance are of practical importance.

• **Theorem:** For the sparse signal model, a uniformly minimum variance unbiased (UMVU) estimator does not exist.

In other words, no estimator uniformly minimizes the mean-squared error (MSE) among all unbiased estimators.

Rather than finding the single best estimator, we will characterize the achievable MSE for every \mathbf{x}_0 .



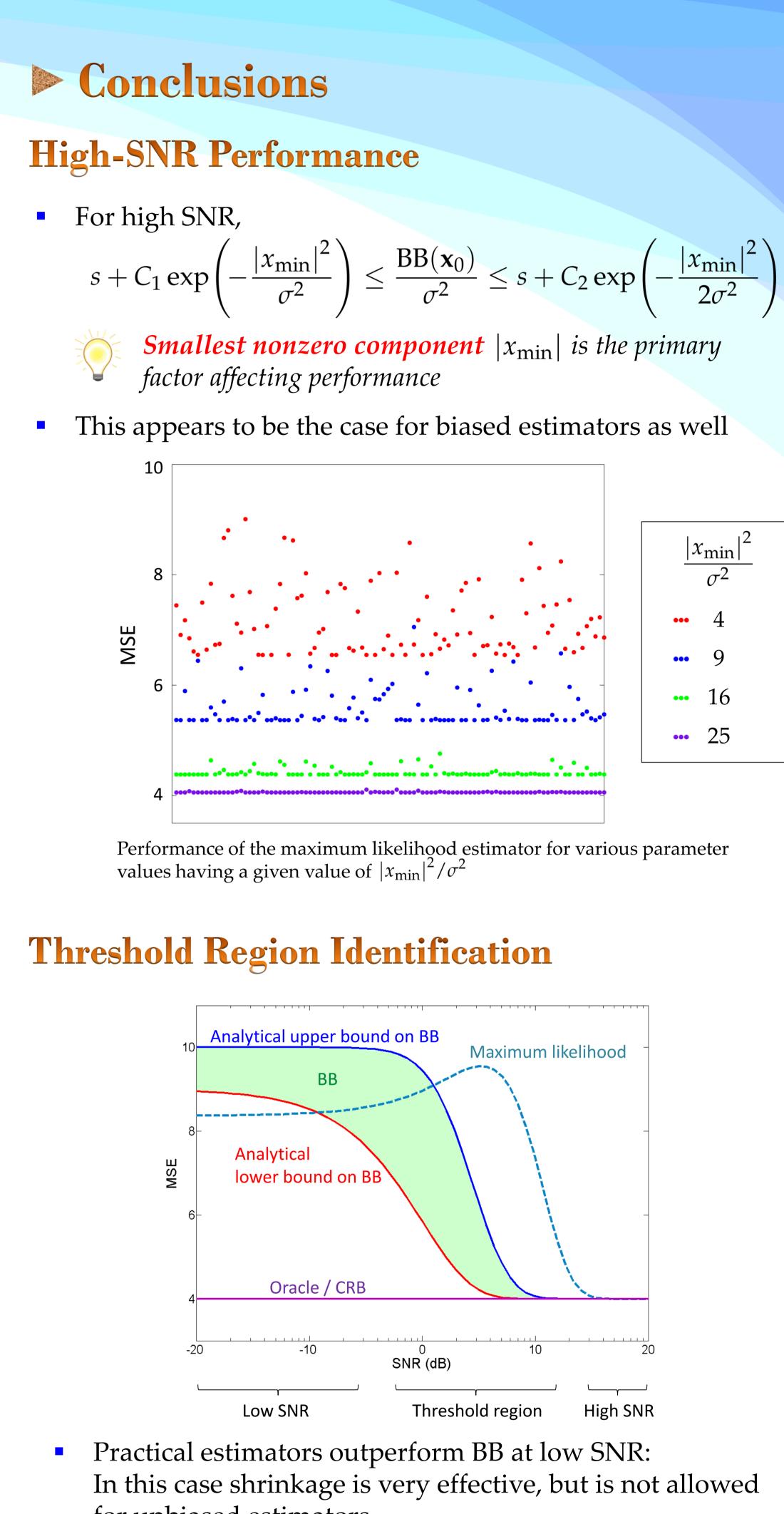
Both lower and upper bounds can be improved numerically. This yields a more accurate (but numerical) characterization of the BB.

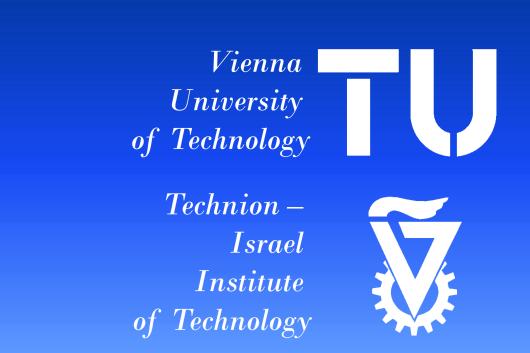
Upper Bound

• **Theorem:** The Barankin bound is upper-bounded by

 $g((\mathbf{x}_0)_\ell)$, $\|\mathbf{x}_0\|_0 = S$ $\|\mathbf{x}_0\|_0 < S$

$$\stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi\sigma^2}} \int_0^\infty e^{-\frac{1}{2\sigma^2}(x^2 + y^2)} \sinh\left(\frac{xy}{\sigma^2}\right) \tanh\left(\frac{xy}{\sigma^2}\right) dy.$$





$$\frac{|x_{\min}|^2}{\sigma^2} \le \frac{\mathrm{BB}(\mathbf{x}_0)}{\sigma^2} \le s + C_2 \exp\left(-\frac{|x_{\min}|^2}{2\sigma^2}\right)$$

for unbiased estimators

BB is similar to the performance of practical estimators at high SNR: Unbiased estimators are optimal in this case

Threshold region is approximately indicated by BB