CWaveIn

Multithreaded Wave Input OOP Support

Zvika Ben-Haim <zvikabh@aluf.technion.ac.il>

Program Status

This software package is public domain. Feel free to copy and modify it. Please mention my name if you use it in your programs, though.

System Requirements

The package was tested under Visual C++ 5.0 in MFC mode.

Description

The CWaveIn class supports wave input (audio recording) in an encapsulated class. The recording is performed using double-buffering and buffer memory is dynamically allocated. Recorded buffers are stored in a list and can be removed by the application during or after recording. Recording is performed on an independent thread. All public operations are thread-safe, and the thread is created and destroyed internally by the member functions.

Construction and Destruction

The CWaveIn object must be constructed after the main window has already been set up. The caller should not place the object as a member of the CDocument derivation, since it will then be constructed too early. Instead, create a pointer to the CWaveIn object and dynamically allocate it, for instance in the OnInitDocument function.

The constructor has the following syntax:

CWaveIn::CWaveIn(UINT uDeviceID, LPWAVEFORMATEX pwfx, UINT uBufSize,

 HWND hwndNotify=NULL)

uDeviceID	A device identification, passed to waveInOpen. This will usually be WAVE_MAPPER

pwfx		Pointer to a WAVEFORMATEX structure containing various sound recording options

uBufSize	Size, in bytes, of each buffer

hwndNotify	Handle to a window which receives notification messages whenever a buffer is added,

		or NULL if no window is to receive notification (see Notification, below).

The constructor opens the selected wave device and creates the recording thread. Since an input device can usually only be opened once at a time, only one CWaveIn object can exist at any time. If the constructor is unsuccessful, an exception is thrown (see Error Handling below).

Starting and Stopping the Recording

After a CWaveIn object is constructed, recording can be started and stopped using the Start and Stop functions. Both functions do not accept any parameters, and return nothing. Note that both functions may show some delay in acting, due to the fact that the recording is performed in a separate thread.

void CWaveIn::Start()

void CWaveIn::Stop()

�
Retrieving Recorded Data

Recorded buffers are stored in an internal list in the CWaveIn object. Two functions are supported for accessing this list. These two functions are thread-safe, so they can be called at any time, even during recording.

BOOL CWaveIn::StackIsEmpty()

Return value:	TRUE	if there are no buffers waiting in the stack

		FALSE	if there is at least one buffer waiting in the stack

WAVEHDR* CWaveIn::StackPop()

Return value:	Pointer to a WAVEHDR structure containing a data buffer and information about it;

		NULL if the stack is empty

Important Note: Both the WAVEHDR structure and the actual buffer are dynamically allocated with operator new. After using them, they must both be deleted by the caller. The following macro, defined in WaveIn.h, deletes both of them:

#define DeleteWaveHdr(pwh)	{ delete[] pwh->lpData; delete pwh; }

Notification

CWaveIn can optionally post notification messages whenever a buffer is pushed into the stack. This is done by specifying the handle of the window which is to receive the messages when constructing the CWaveIn object. If such a window is specified, it receives the message WM_WAVEIN_NOTIFY_PUSH after each buffer is added to the list. This is intended to prevent continual polling of the StackIsEmpty function. The message is defined as follows:

#define WM_WAVEIN_NOTIFY_PUSH		WM_USER + 0x3e

The parameters passed with this message are:

wParam	Pointer to the CWaveIn object

lParam	Not used

Additional Member Functions

HWAVEIN CWaveIn::GetHandle()

Return value:	Handle to the wave input device

UINT CWaveIn::GetBufSize()

Return value:	Buffer size, as specified to the constructor

enum CWaveIn::State { Idle, Recording, Startup, Stopping }

CWaveIn::GetState()

Return value:	Current state of operation, one of the following

		CWaveIn::Idle		Not recording

		CWaveIn::Recording	Currently recording

		CWaveIn::Startup		Initializing recorder thread

		CWaveIn::Stopping		Stopping recorder thread

Error Handling and Detection

Any serious error occuring within CWaveIn causes a message box to be displayed, using AfxMessageBox. Subsequently, a user exception is triggered. If the caller wishes to catch this exception, a further error message is not required on the part of the caller; an appropriate error message has already been displayed.

